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stract

properly characterize a spatio-temporal random process, it is necessary to understand the pr
s’ dependence structure. It is common to describe this dependence using a single random err
ing a complicated covariance. Instead of using the single random error approach, we descri
tio-temporal random processes using linear mixed models having several random errors; ea
dom error describes a specific quality of the covariance. This linear mixed model formulatio
eneral, intuitive, and contains many commonly used covariance functions as special cases. W
us on using the linear mixed model formulation to express three covariance functions: produ
parable), sum (linear), and product-sum. We discuss benefits and drawbacks of each covarian
ction and propose novel algorithms using Stegle eigendecompositions, a recursive applicatio

the Sherman-Morrison-Woodbury formula, and Helmert-Wolf blocking to efficiently invert the
ariance matrices, even when every spatial location is not observed at every time point. Via
ulation study and an analysis of temperature data in Oregon, USA, we assess computation

d model performance of these covariance functions when estimated using restricted maximu
elihood (likelihood-based) and Cressie’s weighted least squares (semivariogram-based). We en
offering guidelines for choosing among combinations of the covariance functions and estimatio
thods based on properties of observed data and the desired balance between computation
ciency and model performance.

ywords: Correlation Function, Descriptive Model, Geostatistics, Restricted Maximum
elihood, Semivariogram, Sherman-Morrison-Woodbury

Introduction

Spatio-temporal models are widely used to study random processes in several scientific field
luding climatology, ecology, environmental science, geography, geology, and others (see Cress
d Wikle (2011), Wikle et al. (2019), and references therein). Cressie and Wikle (2011) categori
tio-temporal models into two broad classes: dynamic and descriptive. Dynamic models are bu
m conditional probability distributions; they capture the evolution of a spatio-temporal proce
ng a Markovian framework. Although dynamic models offer a certain degree of flexibilit
en the primary concern is describing the mean and dependence structures of a spatio-tempor
cess, it is common to use descriptive models. More formally, descriptive models are built b
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cifying the first few moments of a probability distribution. In this paper, we build descripti
tio-temporal models using a linear mixed modeling approach and show how several common
d covariance functions are special cases of this general formulation.
Consider the spatio-temporal model

y = Xβ + ε, (

ere y ≡ {y(si, tj)} is a spatio-temporal process, X ≡ {x(si, tj)} is a design matrix of covariat
trolling the impact of β on y, β is a vector of fixed effects specifying the mean (coarse-scal
y, and ε ≡ {ε(si, tj)} is the random error (fine-scale) of y. The set {(si, tj)} contains spati
poral locations in S × T, where S ≡ {si : i = 1, . . . , S} is a set of spatial locations in R2, an
{tj : j = 1, . . . , T} is a set of time points in R1. If y is observed at every combination of t

patial locations and T time points, then y has ST elements and {(si, tj)} = S× T. If y is n
served at every combination of the S spatial locations and T time points, then y has fewer tha

elements and {(si, tj)} ⊂ S× T.
The dependence structure of y in equation (1) is determined by ε. When ε is second-ord
tionary in space and in time, the covariance between any two elements of y does not depen
their specific spatio-temporal locations; the covariance between these elements only depen
their spatial separation, hs, and their temporal separation, ht. Even when ε is second-ord
tionary in space and in time, it is challenging to generate classes of spatio-temporal covarian
ctions that are strictly positive definite. A covariance function is strictly positive definite
associated covariance matrix is positive definite, while a covariance function is positive defini

its associated covariance matrix is only positive semi-definite. Strict positive definiteness
uired for the covariance matrix to be invertible, and this inverse is often necessary to estima
in equation (1), the parameters composing ε in equation (1), or to make unique predictio
unobserved locations (Kriging). For a thorough review of strict positive definiteness and i
plications on spatio-temporal covariance functions, see De Iaco and Posa (2018) and De Iaco et a
19). In this paper, we focus on three covariance functions that can be strictly positive definit
duct (separable) (Posa, 1993; Haas, 1995; De Cesare et al., 1997), sum (linear) (Rouhani an
ll, 1989), and product-sum (De Cesare et al., 2001; De Iaco et al., 2001).
The product (separable) covariance function is

C(hs, ht) = Cs(hs)C(ht), (

ere Cs(hs) is a spatial covariance function, and Ct(ht) is a temporal covariance function. Produ
ariance functions are strictly positive definite when both Cs(hs) and Ct(ht) are strictly positi
nite (De Iaco et al., 2011). The product structure of this covariance function is restricti

d often unrealistic because of a proportionality implication. Viewed as a function of spa
similarly, time), the product covariance function at separate ht (or similarly, hs) values a
portional. This further implies that for the product covariance function, no amount of spati
ariance is separate from temporal covariance: For example, as Ct(ht) approaches zero, so do

s, ht), irrespective of Cs(hs). Despite this drawback, product covariance functions are oft
d in practical applications even when their use is not physically justifiable (Gneiting et a
6). This is primarily because when {(si, tj)} = S × T, obtaining the inverse of the produ
ariance matrix is computationally efficient. Unfortunately this computational efficiency is lo
en {(si, tj)} ⊂ S× T.
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The sum (linear) covariance function is

C(hs, ht) = Cs(hs) + Ct(ht). (

ough free from the proportionality implication restricting the product covariance function, t
covariance function has a different restriction: When both Cs(hs) and Ct(ht) are strict

sitive definite, the sum covariance function is not guaranteed to be strictly positive definite, it
ly guaranteed to be positive definite (Myers and Journel, 1990). Though likely a logical choi
model the covariance of many spatio-temporal processes, the practicality of the sum covarian
ction is largely diminished by the lack of strict positive definiteness. In contrast to the produ
ariance matrix, the sum covariance matrix does not have a computationally efficient inverse
xists) when {(si, tj)} = S× T.
A straightforward extension of the product and sum covariance functions yields the produc

covariance function. The product-sum covariance function is

C(hs, ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht), (

ere k1, k2, and k3 are nonnegative weightings among the three components. Product-su
ariance functions are strictly positive definite when k1 is positive and both Cs(hs) and Ct(ht) a
ictly positive definite. Their flexible, intuitive form is free from the proportionality restrictio
the product covariance function and the positive definite restriction of the sum covarian
ction. Because of this, product-sum covariance functions have been used to model many spati
poral processes in a variety of disciplines (De Iaco et al., 2015). Like the sum covarian

trix, the product-sum covariance matrix does not have a computationally efficient inverse wh

i, tj)} = S× T.
As illustrated by equations (2), (3), and (4), spatio-temporal covariances can involve com

cated functions of several parameters. Rather than modeling these parameters using a sing
dom error, we can isolate specific qualities of the covariance structure by incorporating sever
dom errors that connect variance components to covariance functions. These random erro
be regarded as random effects in the linear mixed model

y = Xβ + Z1u1 + . . .+ Zquq + ν, (

ere Xβ is the mean structure from equation (1), ui is the ith random effect, Zi is the desig
trix corresponding to ui, and ν is random error that is independent for each observation (i
pletely independent random error). The u and Z terms from equation (5) are related to spati

d temporal locations in Section 2.
The rest of this paper is organized as follows. In Section 2, we describe spatio-temporal pr
ses using a linear mixed model formulation. We link this linear mixed model formulation

product (2), sum (3), and product-sum (4) covariance functions and introduce an adjus
nt to the sum covariance function, which we call the sum-with-error covariance function. T
-with-error covariance function is more flexible than the sum covariance function, is strict

sitive definite, and has a computationally efficient matrix inverse. In Section 3, we discu
ariance parameter estimation using likelihood-based and semivariogram-based methods an
e an overview of spatio-temporal prediction (Kriging). In Section 4, we develop a novel a
ithm used to efficiently invert product, sum-with-error, and product-sum covariance matrice
n when {(si, tj)} ⊂ S× T. Via a simulation study (Section 5) and an analysis of temperatu

ta (Section 6), we compare the computational and model performance among the product, sum

3
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h-error, and product-sum covariance functions estimated using restricted maximum likelihoo
elihood-based) and Cressie’s weighted least squares (semivariogram-based). Finally, in Sectio

we conclude with a general discussion and provide directions for future research.

A Linear Mixed Model Formulation for Spatio-Temporal Random Processes

The linear mixed model formulation in equation (5) is a general approach that can be used
del many spatio-temporal random processes. Building from Cressie and Wikle (2011, p. 304
sider the second-order stationary (in space and in time) linear mixed model

y = Xβ + Zsδ + Zsγ + Ztτ + Ztη + ω + ν, (

ere y is an n × 1 response vector, X is an n × p design matrix of covariates, β is a p ×
rameter vector of fixed effects, Zs is an n × S design matrix whose rows reference uniq
tio-temporal locations and columns reference S unique spatial locations, and Zt is an n ×
ign matrix whose rows reference unique spatio-temporal locations and columns reference

ique time points. For a general spatio-temporal location (si, tj), the corresponding row
equals one in the ith column and zero elsewhere, and the corresponding row in Zt equa

e in the jth column and zero elsewhere. For a simple example of Zs and Zt, consid
{y(s1, t1), y(s2, t1), y(s3, t1), y(s1, t2), y(s2, t2)}. Then

Zs =




1 0 0
0 1 0
0 0 1
1 0 0
0 1 0



, and Zt =




1 0
1 0
1 0
0 1
0 1



.

e random effects in equation (6), δ,γ, τ ,η,ω, and ν, are zero-mean vectors. The vecto
, and ω are the spatial, temporal, and spatio-temporal dependent random errors, respective

e vectors γ and η are the spatial and temporal independent random errors, respectively. T
tor ν is completely independent random error at each spatio-temporal location. The complete
ependent random error is common to standard linear regression models, and its inclusion
tio-temporal models adds an extra layer of flexibility. We call equation (6) the spatio-tempor

ear mixed model (spatio-temporal LMM).
Each random effect in the spatio-temporal LMM has a unique covariance: Cov(δ) = σ2

δR
v(γ) = σ2

γIs, Cov(τ ) = σ2
τRt, Cov(η) = σ2

ηIt, Cov(ω) = σ2
ωRst, and Cov(ν) = σ2

νIst. The m
x subscripts, s, t, and st, indicate spatial-only, temporal-only, and spatio-temporal interactio

ponents of the covariance, respectively. These matrix dimensions, as well as the dimensio
δ,γ, τ ,η,ω, and ν, follow directly from equation (6). Each component of these covarian
trices involves the product of a variance parameter and an R matrix or an I matrix. The
trices model random errors having correlation and depend on range parameters controlling t
relation’s behavior as a function of distance. Some examples of correlation functions common
d to model the R matrices include the exponential, spherical, Gaussian, Matérn (Cressie, 199

. 85-86, p. 94), or auto-regressive-integrated-moving-average (ARIMA) (Shumway and Stoffe
7, p. 134) functions. The variance parameters multiplied by the R matrices are commonly r

red to as dependent random error variances or partial sills. The I matrices are identity matric
deling independent random errors. The variance parameters multiplied by the I matrices a
monly referred to as independent random error variances or nuggets. It is worth noting th
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ure 1: Covariance function behavior in the spatio-temporal LMM. In (A), the covariance function is viewed w
poral distance on the x-axis and spatial distance using line types. In (B), the covariance function is viewed with spat
ance on the x-axis and temporal distance using line types. Distances of 0+ indicates a right limit approaching ze

variance parameters σ2
δ (spatial dependent variance), σ2

γ (spatial independent variance), σ2
τ (temporal depende

iance), and σ2
η (temporal independent variance) are identified using brackets. The σ2 parameter denotes the sum

variance components (the overall variance).

ation (6) only requires specification of y’s first two moments and does not inherently rely o
distributional assumptions.

Assuming mutual independence among the random effects in equation (6), the covariance m
x for y, denoted by Σ, is

Σ = σ2
δZsRsZ

′
s + σ2

γZsZ
′
s + σ2

τZtRtZ
′
t + σ2

ηZtZ
′
t + σ2

ωRst + σ2
νIst. (

eral families of commonly used spatio-temporal covariance functions can be expressed as
cial case of equation (7); Montero et al. (2015) and Porcu et al. (2019) provide thorough review

many of these families. For example, the Gneiting covariance function (Gneiting, 2002) can
tained through specification of σ2

ωRst while setting all other variance parameters equal to zer
further subsections, we show how the product, sum-with-error, and product-sum covarian
ctions are special cases of equation (7).
An understanding of equation (7) can be aided by through visualizations. The variance param
rs can be uniquely identified through linear combinations of limiting cases of the R matrice
d Figure 1 shows how to clearly represent σ2

δ , σ
2
γ, σ

2
τ , and σ2

η. Further details and equivale
resentations using semivariograms (semivariograms are discussed in Section 3.2) are provid
the supplementary material.

. The Product Linear Mixed Model

Suppose the spatial dependence in y has covariance matrix Cs ≡ σ2
s [(1− πs)Rs + πsIs], whe

is the overall spatial variance (sill), and πs is the proportion of σ2
s attributable to independe

dom error (proportion of nugget variance). Analogously suppose the temporal dependence
as covariance matrix Ct ≡ σ2

t [(1− πt)Rt + πtIt]. The product covariance matrix of y is

Σ = ZsCsZ
′
s � ZtCtZt = σ2

sσ
2
t (ZsR

∗
sZ
′
s � ZtR

∗
tZt), (

5
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2
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2
t . The va

ce parameters in equation (8) are not identifiable individually, but their product is identifiab
parameterizing σ2

ω ≡ σ2
sσ

2
t to ensure identifiability of the variance parameter yields the followin

duct covariance matrix:

Σ = σ2
ω(ZsR

∗
sZ
′
s � ZtR

∗
tZt) = σ2

ωRst, (

ere Rst = (ZsR
∗
sZ
′
s � ZtR

∗
tZt). Written this way, it becomes clear that the covariance matr

equation (9) is the covariance matrix of a special case of the spatio-temporal LMM. Mo
cifically, this special case is

y = Xβ + ω, (1

ere Cov(ω) = σ2
ωRst and Rst = (ZsR

∗
sZ
′
s � ZtR

∗
tZt). We define the model in equation (1

h the covariance matrix in equation (9) as the product linear mixed model (product LMM
panding equation (9) further details its product structure:

Σ = σ2
ω(1− πs)(1− πt)(ZsRsZ

′
s � ZtRtZ

′
t) (1

+ σ2
ω(1− πs)(πt)(ZsRsZ

′
s � ZtItZ

′
t)

+ σ2
ω(πs)(1− πt)(ZsIsZ

′
s � ZtRtZ

′
t)

+ σ2
ω(πs)(πt)(ZsIsZ

′
s � ZtItZ

′
t),

uation (11) highlights the explicit dependence among the variance parameters, making cle
restrictions of this product structure. For example, when πs tends towards zero, th
− πt)πsRt ⊗ Is, a function of the temporal correlation, also tends towards zero.

. The Sum-With-Error Linear Mixed Model

Another special case of the spatio-temporal LMM is

y = Xβ + Zsδ + Zsγ + Ztτ + Ztη. (1

uation (12) has covariance matrix

Σ = σ2
δZsRsZ

′
s + σ2

γZsZ
′
s + σ2

τZtRtZ
′
t + σ2

ηZtZ
′
t,

ich is the matrix representation of the sum covariance function. As mentioned in Section
ignificant drawback of the sum covariance function is that it is not guaranteed to be strict
sitive definite. We can instead consider a model of the form

y = Xβ + Zsδ + Zsγ + Ztτ + Ztη + ν, (1

ich has covariance matrix

Σ = σ2
δZsRsZ

′
s + σ2

γZsZ
′
s + σ2

τZtRtZ
′
t + σ2

ηZtZ
′
t + σ2

νIst. (1

call the model in equation (13) with the covariance matrix in equation (14) the sum-wit
or linear mixed model (sum-with-error LMM). We call the covariance function whose matr
resentation is equation (14) the sum-with-error covariance function. The sum-with-error c
iance function is certainly more flexible than the sum covariance function, as the sum c

6
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iance function is a special case of the sum-with-error covariance function. Furthermore, t
-with-error covariance function is strictly positive definite. A proof of this statement is i

ded in the supplementary material and relies on the positive semi-definiteness of the matr

sRsZ
′
s + σ2

γZsZ
′
s + σ2

τZtRtZ
′
t + σ2

ηZtZ
′
t and the positive definiteness of the matrix σ2

νIst.

. The Product-Sum Linear Mixed Model

Consider the full spatio-temporal LMM (6) with covariance matrix from equation (7). If R
equation (7) equals (ZsRsZ

′
s)� (ZtRtZ

′
t), the covariance matrix is

Σ = σ2
δZsRsZ

′
s + σ2

γZsZ
′
s + σ2

τZtRtZ
′
t + σ2

ηZtZt + σ2
ω(ZsRsZ

′
s)� (ZtRtZ

′
t) + σ2

νIst. (1

e model in equation (6) with the covariance matrix in equation (15) is the product-sum line
xed model (product-sum LMM). The product-sum LMM combines components of both t
duct LMM and the sum-with-error LMM. It is not bound by the proportionality implicatio
the product LMM, and unlike the sum-with-error LMM, the product-sum LMM contains
duct term. The product-sum LMM’s covariance matrix in equation (15) does not always equ
matrix representation of the original product-sum covariance function in equation (4).

ation (15), the product term does not contain independent error components. But unli
original product-sum covariance function, equation (15) enables complete variance compone

aration. This complete variance component separation makes it straightforward to isola
iance parameters and partition sources of error.
The product-sum LMM’s covariance matrix could even be made more flexible by letting R
al (ZsR̃sZ

′
s)� (ZtR̃tZ

′
t), where R̃s and R̃s are different from Rs and Rt, respectively. Thoug

s yields a more general family of covariance functions, we do not focus on this case in th
per for a few reasons. First, the original product-sum covariance function specifies the sam
tial and temporal covariance functions for the sum and product terms. Second, interpretin

d visualizing the behavior of relevant spatial and temporal correlation functions, as in Figure
less intuitive when accommodating R̃s and R̃t. Third, the additional parameters in R̃s an
make estimation more challenging by increasing both the dimensionality of the optimizatio

d the difficulty associated with identifying unique covariance function components. We discu
imation in more detail next.

Parameter Estimation and Prediction

The covariance parameters and fixed effects of the models in Section 2 generally require e
ation. In this section, we review parameter estimation using restricted maximum likelihoo

EML) (Patterson and Thompson, 1971; Harville, 1977) and Cressie’s weighted least squar
WLS) (Cressie, 1985), two commonly used parameter estimation methods. We then review be
ear unbiased prediction (Kriging). We end the section by discussing alternative estimation an
diction approaches.

. Restricted Maximum Likelihood Estimation

Minus twice a profiled Gaussian log-likelihood is

−2l(θ|y) = ln |Σ|+ (y −Xβ̃)Σ
−1

(y −Xβ̃)′ + c1, (1

ere y is a vector of response variables, θ is a vector of covariance parameters, Σ is a covarian
trix, |.| denotes the determinant operator, β̃ = (X′Σ−1

X)−1X′Σ−1
y, and c1 is an additi

7
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stant. Minimizing equation (16) yields θ̂ml, the maximum likelihood (ML) estimator of
general, no closed-form solution exists for θ̂ml, and it must be solved for numerically. Aft

taining θ̂ml, a closed form solution for the ML estimator of β exists: β̂ml ≡ (X′Σ̂
−1

mlX)−1X′Σ̂
−1

ml

ere Σ̂ml is Σ evaluated at θ̂ml instead of θ. Unfortunately, θ̂ml can be badly biased for θ becau
ation (16) does not account for the simultaneous estimation of θ and β. To address this bi
blem, Patterson and Thompson (1971) propose transforming equation (16) using random err
trasts, which results in a new likelihood: The restricted (or residual) Gaussian likelihoo
lfinger et al. (1994) shows that minus twice the profiled restricted Gaussian log-likelihood is

−2lR(θ|y) = −2l(θ|y) + ln |X′Σ−1
X|+ c2, (1

ere c2 is an additive constant. Minimizing equation (17) yields θ̂reml, the restricted ma
um likelihood estimator (REML) of θ. Similar to ML estimation, θ̂reml must generally
ved for numerically, but then a closed-form solution for the REML estimator of β exist

ml ≡ (X′Σ̂
−1

remlX)−1X′Σ̂
−1

remly. Equations (16) and (17) can also be further profiled by the
rall variance, reducing the number of parameters in θ requiring estimation by one (Wolfing
al., 1994). Because of the bias problem in ML estimation, we focus only on REML estimatio
ceforth.
When y is Gaussian, θ̂reml has several attractive statistical properties: It is computed fro

biased estimation equations (Heyde, 1994; Cressie and Lahiri, 1993, 1996); under appropria
ularity conditions, it is consistent, asymptotically efficient, and asymptotically Gaussian (Swee
, 1980; Mardia and Marshall, 1984; Cressie and Lahiri, 1993); and its standard errors can
imated using the expected or observed Hessian (Cressie and Lahiri, 1993). For REML estim
n, model selection can be performed using likelihood-based statistics such as AIC (Akaike, 197
a likelihood-ratio test for nested models.
When y is not Gaussian, θ̂reml is still computed from unbiased estimating equations (Heyd
4; Cressie and Lahiri, 1993, 1996). This is a crucial result because it implies y does not ha
be Gaussian for θ̂reml to be unbiased. To illustrate a familiar example, suppose y has mea

and common independent variance σ2I. The standard ordinary least squares estimate
is s2 ≡ [(y −Xβ̂)′(y −Xβ̂)]/(n− p), where n is the sample size, p is the dimension of β, an

(X′X)−1X′y. It is well known s2 is unbiased for σ2 even when the distribution of y is unknow
rthermore, it is straightforward to show that the REML estimate of σ2 is s2. More general
espective of y’s distribution and under appropriate regularity conditions, β̂reml is unbiase
sistent, asymptotically Gaussian, and asymptotically efficient (Theil, 1971; Fuller and Battes
3; Schmidt, 1976; Judge et al., 1985; Schabenberger and Gotway, 2017). Together, REML

biased estimating equations for θ and attractive asymptotic results for β highlight its usefulne
en y is not Gaussian.
Though these aforementioned properties of θ̂reml are certainly attractive, REML suffers fro
putational limitations as the sample size grows. This is because numerical minimization
ation (17) requires repeated inversion of Σ, and the computational cost of inversion is cubic
sample size.

. Semivariogram-Based Estimation Using Cressie’s Weighted Least Squares

Instead of covariance functions, spatio-temporal dependence can be described using semiva
rams. The spatio-temporal semivariogram quantifies the variability in the differences amon
ments in y as a function of the spatial and temporal distances between these elements. Cress
d Wikle (2011) provide a thorough description and review of spatio-temporal semivariogram

8
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d discuss the one-to-one correspondence between spatio-temporal covariance functions and sem
iograms when the random processes is second-order stationary in space and in time (we al
vide this one-to-one correspondence in the supplementary material).
Starting with the spatio-temporal LMM in equation (6), define ε ≡ y − Xβ. The spati
poral semivariogram for ε, denoted by γε(hs, ht), depends on the same parameter vector θ th
covariance function does. Before estimating θ, however, we must first estimate γε(hs, ht). Th
ften accomplished by using an estimator that moment-matches γε(hs, ht) at a set of fixed spati

d temporal distance classes (Cressie and Wikle, 2011). This estimate of γε(hs, ht), denot
γ̂ε(hs, ht), is commonly referred to as the empirical semivariogram for ε. After calculatin
empirical semivariogram, θ can be estimated using a least squares approach. Least squar

proaches estimate θ by minimizing a sum of squares involving γ̂ε(hs, ht) and γε(hs, ht). T
st squares approach we focus on is Cressie’s weighted least squares (CWLS), where numeric
nimization of

∑

i

wi[γ̂ε(hs, ht)i − γε(hs, ht)i]2 (1

lds θ̂cwls. In equation (18), i indexes the spatio-temporal distance classes used to com
te γ̂ε(hs, ht), |N(hs, ht)| denotes the number of observations in the distance class, an
= |N(hs, ht)i|γε(hs, ht)−2i . We focus on CWLS because it commonly used and computatio
y efficient. Reviews of other semivariogram-based estimation approaches are outlined by Cress
93), Lahiri et al. (2002), and Schabenberger and Gotway (2017).
In practice, we do not observe a realization of ε, and it must be estimated. One estimat
oted by ε̂, is the vector of ordinary least squares residuals. Unfortunately γ̂ε̂(hs, ht) is a

imate of γε̂(hs, ht), not an estimate of γε(hs, ht). An implication is that γ̂ε̂(hs, ht) is biased f
hs, ht), though this bias decreases as the sample size increases (Cressie, 1993, pp. 166-168).
After computing γ̂ε̂(hs, ht) and using CWLS (18) to estimate θ̂cwls, empirical (feasible) gene

zed least squares (EGLS) can be used with θ̂cwls to estimate β: β̂cwls ≡ (X′Σ̂
−1

cwlsX)−1X′Σ̂
−1

cwls

is estimate has the same form as β̂reml – they only differ in the θ̂ used to compute Σ̂
−1

. A
computing β̂cwls, we can compute EGLS residuals and use them to recompute γ̂ε̂(hs, ht),

d β̂cwls. This iterative re-estimation process can continue until some convergence criterion
isfied, though Kitanidis (1993) and Ver Hoef and Cressie (2001) observed additional iteratio
erally had little impact on their model performance.
Under appropriate regularity conditions, θ̂cwls is consistent and asymptotically Gaussian (Lah

al., 2002). Like β̂reml, β̂cwls is unbiased and under appropriate regularity conditions is cons
t, asymptotically Gaussian, and asymptotically efficient. The main computational burden
LS is calculating the empirical semivariogram, not minimizing equation (18) – equation (1

ds to be very computationally efficient. Once the empirical semivariogram has been calculate
paring the fit of different dependence structures using CWLS estimation only requires separa

nimizations of (18). To compare two dependence structures using REML, however, the REM
elihood must be maximized twice, which can be time consuming for large sample sizes due

matrix inversions required.
Unfortunately there are some drawbacks to CWLS estimation. Most notably, CWLS estim

n requires the specification of arbitrary spatial and temporal distance classes used to compu
empirical semivariogram, and different choices of distances classes impact parameter estimat

d model performance. If calculating γ̂ε(hs, ht) requires averaging within distance classes, CWL
imation also results in some loss of detail regarding the underlying process. Additionally, θ̂cw

9
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nly asymptotically efficient in special cases, and obtaining its standard errors is less straigh
ward than for REML estimation (Lahiri et al., 2002).

. Prediction

Spatio-temporal prediction is often the primary goal of a data analysis. It is usually desir
t these predictions are in some sense optimal. In this context, we consider a predictor optimal
s unbiased, linear, and has minimum variance within the class of all unbiased, linear predictor
s predictor is often referred to as a best linear unbiased predictor (BLUP) or a Kriging predicto
nsider the structure of y in the spatio-temporal LMM (6), and let ẏ be a vector of unobserv
iables coming from the same distribution. When β is unknown and θ is known, the (BLUP)
s given by

ẏBLUP = Ẋβ̃ + ċΣ
−1

(y −Xβ̃), (1

ere Ẋ is the design matrix of covariates at the prediction locations, β̃ = (X′Σ−1
X)−1X′Σ−1

d ċ = Cov(ẏ,y) (Cressie, 1993, p. 173). The covariance of ẏBLUP is given by

Cov(ẏBLUP) = Σ̇− ċΣ
−1

ċ′ + H(X′Σ−1
X)−1H′, (2

ere Σ̇ is the covariance matrix of ẏ, and H = (Ẋ − ċΣ
−1

X) (Cressie, 1993, p. 173). If θ
known, the quantities in equations (19) and (20) involving θ are instead evaluated at θ̂.
s context, the predictor is instead referred to as an empirical best linear unbiased predict
BLUP) and is denoted by ẏEBLUP.

. Alternative Approaches to Estimation and Prediction

Though we focus on REML estimation, CWLS estimation, and best linear unbiased predictio
s important to acknowledge that these estimation and prediction approaches require the inver
an n×n matrix, where n is the sample size: REML requires several n×n inverses to iterative
imate θ and one n × n inverse to estimate β, CWLS requires one n × n inverse to estima
and best linear unbiased prediction requires one n × n inverse. Directly inverting an n ×
trix has computational cost O(n3), which makes covariance matrix inversion more challengin
the sample size increases. This challenge has generated a wide array of research focused o
ernative estimation and prediction approaches that avoid n × n matrix inversions, either b
proximating the inverse or by using an approach that does not depend on the inverse. Heato
al. (2019) provides a thorough overview of several of these alternatives and compares them o
l and simulated data. Our novel, computationally efficient approach is described in Section
d leverages the structure of the product, sum-with-error, and product-sum covariance functio
compute exact covariance matrix inverses without having to invert any n× n matrices.

Efficient Covariance Matrix Inversion

As mentioned in Section 3.4, we propose a novel computational approach that leverages t
ucture of the product, sum-with-error, and product-sum covariance matrices to compute e

inverses without having to invert any n × n matrices. Our approach is purely algorithm
ich has two attractive implications. First, our approach solves the exact inverse of these c
iance matrices without requiring approximations. Second, our approach can even be combin
h alternative approaches to further reduce computational costs associated with estimation an

10
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diction. For example, our efficient inversion algorithms could be combined with the low-ran
resentations used by Fixed-Rank Kriging (Cressie and Johannesson, 2008; Zammit-Mangio

d Cressie, 2017). Next, we describe these algorithms and discuss how they change wheth

i, tj)} = S× T or {(si, tj)} ⊂ S× T. We then provide some computational benchmarks.

. Inverse Computations When {(si, tj)} = S× T
We previously mentioned that when {(si, tj)} = S× T, product covariance matrices have

onecker structure facilitating efficient inverse computation. Suppose the data are ordered b
ce within time: y ≡ {y(s1, t1), y(s2, t1), . . . , y(s1, t2), y(s2, t2), . . . , y(sS, tT )}. In this contex
inverse of the product LMM’s covariance matrix (9) can be expressed as

Σ
−1

= [(R∗s)
−1 ⊗ (R∗t )

−1]/σ2
ω. (2

uation (21) is computationally efficient because it only requires one set of O(S3) floating poi
erations (flops) and one set of O(T 3) flops for inverses; this is substantially less demanding tha
O(S3T 3) flops required to compute the inverse using a algorithm that does not take advanta

the Kronecker structure, such as the Cholesky decomposition.
The sum-with-error LMM’s covariance matrix (14) has an efficient form that can be exploit
an iterative application of the Sherman-Morrison-Woodbury formula (Sherman, 1949; Sherma

d Morrison, 1950; Woodbury, 1950). It is first helpful to rewrite equation (14) using condens
tation:

Σ = ZsΣsZ
′
s + ZtΣtZ

′
t + σ2

ωIst,

ere Σs = σ2
δRs+σ

2
γIs and Σt = σ2

τRt+σ
2
ηIt. The first step in computing Σ

−1
requires computin

tΣtZ
′
t + σ2

νIst)
−1 using the Sherman-Morrison-Woodbury formula. This inverse, denoted b

W(σ2
νI

−1

st ,Σt,Zt), can be expressed as

SMW(σ2
νI

−1

st ,Σt,Zt) = (σ2
νIst)

−1 − (σ2
νIst)

−1Zt(Σ
−1

t + Z′t(σ
2
νIst)

−1Zt)
−1Z′t(σ

2
νIst)

−1.

other application of the Sherman-Morrison-Woodbury formula can be used to compu

sΣsZ
′
s + ZtΣtZ

′
t + σ2

ωIst)
−1, which equals Σ

−1
. The entire algorithm is expressed compact

Σ
−1

= SMW(SMW(σ2
νI

−1

st ,Σt,Zt),Σs,Zs). (2

uation (22) is computationally efficient because the inner SMW(·) requires two sets of O(T
ps for inverses, and the outer SMW(·) requires two sets of O(S3) flops for inverses. Furthermor

sparsity of Zs and Zt can be used to avoid direct multiplications in products involving the
trices. Because the sum covariance (3) matrix lacks σ2

νIst, its inversion (if it exists) requir
S3T 3) flops because the Sherman-Morrison-Woodbury formula cannot be recursively applied
The covariance of the product-sum LMM (15) has an efficient form that can be exploit
Stegle eigendecompositions (Stegle et al., 2011) and an iterative application of the Sherma
rrison-Woodbury formula. Equation (15) can also be rewritten using condensed notation:

Σ = ZsΣsZ
′
s + ZtΣtZ

′
t + Σst,

ere Σs = σ2
δRs+σ

2
γIs, Σt = σ2

τRt+σ
2
ηIt, and Σst = σ2

ωRt⊗Rs+σ
2
νIst. The first step in computin

1
is using the Stegle eigendecomposition of Σst. Let UsPsU

′
s be the eigendecomposition of R

11
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d UtPtU
′
t be the eigendecomposition of Rt. Then Σ

−1

st , denoted by STE(Σst), can be express

STE(Σst) = (WV−1/2)(WV−1/2)′, (2

ere W = Ut ⊗Us and V = σ2
ωPt ⊗ Ps + σ2

νIt ⊗ Is. Because Ps and Pt are diagonal matric
eigenvalues, V is diagonal, and computing V−1/2 is trivial. In the second part of the algorithm

Sherman-Morrison-Woodbury formula is used to compute (ZtΣtZ
′
t + Σst)

−1:

SMW(Σ
−1

st ,Σt,Zt) = Σ
−1

st −Σ
−1

st Zt(Σ
−1

t + Z′tΣ
−1

st Zt)
−1Z′tΣ

−1

st .

e third part of the algorithm uses another application of Sherman-Morrison-Woodbury formu
compute (ZsΣsZ

′
s + ZtΣtZ

′
t + Σst)

−1, which equals Σ
−1

. The entire inversion algorithm
pactly expressed as

Σ
−1

= SMW(SMW(STE(Σst),Σt,Zt),Σs,Zs). (2

uation (24) is computationally efficient because STE(·) requires one set of O(S3) flops and o
of O(T 3) flops for eigendecompositions, the inner SMW(·) requires two sets of O(T 3) flops f
erses, and the outer SMW(·) requires two sets ofO(S3) flops for inverses, far fewer thanO(S3T
ps. The computational efficiency of equation (24) can be further improved by incorporating tw
ditional tools. First, as with the sum-with-error LMM, the sparsity of Zs and Zt can be used
id direct multiplications in products involving these matrices. Second, Σ

−1
can be multipli

the right by X, y, and ċ ≡ Cov(ẏ,y), where ẏ is a vector of new y’s to predict. This operatio
kes it possible to avoid direct multiplication of the two ST ×ST matrices in equation (23) wh
taining the products Σ

−1
X, Σ

−1
y, and Σ

−1
ċ. These products can be used for estimation an

diction without actually requiring Σ
−1

. We provide analogous forms of equations (21), (22
d (24) for log determinants in the supplementary material.

. Inverse Computations When {(si, tj)} ⊂ S× T
It is common in practice to be missing at least one element of {(si, tj)} from S × T. Wh

i, tj)} ⊂ S× T, equation (22) is unaffected because it does not rely on Kronecker product
uations (21) and (24), however, cannot be used directly because the efficient form for t
erse (or eigendecomposition) of a Kronecker product is lost. Next we show how to incorpora
lmert-Wolf blocking (Wolf, 1978) when {(si, tj)} ⊂ S× T to retain most of the computation
ciency gained by equations (21) and (24).
Before illustrating the usefulness of Helmert-Wolf blocking, suppose y is now more general an
tains elements we observe and elements we do not observe. In this context, y can always

rtitioned by two components. The first component is yo, an no×1 vector of observable elemen
ose spatio-temporal locations form a subset of S × T. The second component is yu, an nu ×
tor of unobservable elements whose spatio-temporal locations are those in S× T missing fro
spatio-temporal locations in yo. Because yo and yu are distinct, and the union of their spati
poral locations equals S×T, it follows that no + nu = ST . The covariance matrix of y can

itten in block form:

Σ =

[
Σoo Σou

Σuo Σuu

]
, (2

12
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ere Σoo = Cov(yo,yu), Σou = Cov(yu,yo), Σuo = Cov(yu,yo), and Σuu = Cov(yu,yu). Ge
lly, Σou, Σuo, and Σuu are not useful because estimation and prediction only requires Σ

−1

oo , t
erse of the covariance matrix of yo. But in this context, the block representation in equation (2
elevant because it corresponds to a spatio-temporal process where {(si, tj)} = S× T. Thoug
have not observed yu, we do know its spatio-temporal locations are the elements of S ×

ssing from the spatio-temporal locations of yo. With a second-order stationarity assumption
ce and in time, we can use the spatio-temporal locations of yo and yu to construct Σou, Σu

d Σuu and by consequence, Σ. After ordering Σ by space within time, equations (21) or (2
be applied. Then the space within time ordering can be undone, finally yielding Σ

−1
. Like Σ

1
can be expressed in block form:

Σ
−1

=

[
Σ̃oo Σ̃ou

Σ̃uo Σ̃uu

]
,

ere the dimensions of the blocks in Σ
−1

match the dimensions of the blocks in Σ. Helmert-Wo
cking enables recovery of Σ

−1

oo through the following matrix operation:

Σ
−1

oo = Σ̃oo − Σ̃ouΣ̃
−1

uuΣ̃uo. (2

e main computational burden in equation (26) is inversion of Σ̃uu, which must be comput
ectly. If nu is small, this additional computation cost is minimal, and using equation (21) or (2
combination with equation (26) is nearly as fast as directly applying equation (21) or (24). F
product-sum LMM, the multiplication of two ST ×ST matrices can be avoided by computin

1

oXo, Σ
−1

ooyo, and Σ
−1

oo ċ instead of Σ
−1

oo . Finally, an analogous result for equation (26) exists f
determinants and is provided in the supplementary material.

. Computational Benchmarks

We compared the algorithms from sections 4.1 and 4.2 to a Cholesky decomposition approach f
ious spatio-temporal sample sizes ranging from 1,000 to 15,000. Inversion times were record
the product of Σ

−1
with a fixed effect design matrix, X, and the product of Σ

−1
with a respon

tor, y (recall Σ
−1

X and Σ
−1

y are required for estimation of β). In our application, X has fo
umns and y has one column. These dimensions were chosen to match the dimensions of X an
n Sections 5 and 6. Other decompositions in combination with linear forward solves can be us
estimation of θ, estimation of β, and prediction, but we focus on comparing to the Cholesk
omposition approach because it yields convenient forms for log determinants (required durin
ML estimation) and directly solves Σ

−1
X and Σ

−1
y in a straightforward manner.

The average inversion times for the Cholesky decomposition inversion approach were mu
wer than for our algorithms, especially at the larger sample sizes (figures 2A and 2B). Amon
r algorithms, the product was the fastest, followed by the sum-with-error and then the produc

. The ratio of times for the Cholesky decomposition inversion approach to times using o
orithms increased with the sample size (Figure 2C). Together, figures 2A, 2B, and 2C show the
duct, sum-with-error, and product-sum algorithms can vastly increase the speed associated wi
ML estimation of θ and β, CWLS estimation of β, and best linear unbiased prediction by mo

ickly acquiring the products involved with Σ
−1

. But these computational gains are especial
portant for REML estimation of θ because of the repeated inversions of the covariance matr
uired. For each of the three algorithms, suppose REML estimation requires 60 iterations
verge to a solution. Figure 2B implies that at a sample size near 15,000, estimating covarian

13
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ure 2: Computational benchmarks for various sample sizes. Total sample sizes were determined by taking all com
ions of equal numbers of unique spatial locations and unique temporal locations and then removing a single spat
poral location so {(si, tj)} ⊂ S×T. All plot symbols indicate the average of 100 repetitions at each sample size. (
ws the average time (in seconds) for the product (P), sum-with-error (SWE), product-sum (PS), and Cholesky (CHO
rsion algorithm approaches. In (A), discerning between the P, SWE, and PS algorithms is difficult, so (B) zoo
n both the x and y axes. (C) shows the ratios of average inversion approach times for the Cholesky decompositi
tive to our algorithms. (D) shows the average computational time (in seconds) for the empirical semivariogram.
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Table 1: Models, estimation methods, and abbreviations.

Model Estimation Method Abbreviation
Product LMM Restricted Maximum Likelihood PREML

Product LMM Cressie’s Weighted Least Squares PCWLS

Sum-With-Error LMM Restricted Maximum Likelihood SWEREML

Sum-With-Error LMM Cressie’s Weighted Least Squares SWECWLS

Product-Sum LMM Restricted Maximum Likelihood PSREML

Product-Sum LMM Cressie’s Weighted Least Squares PSCWLS

Independent Random Error Ordinary Least Squares IREOLS

rameters of the product, sum-with-error, and product-sum LMM’s could take approximately
nutes, 20 minutes, and 80 minutes, respectively.
CWLS estimation of θ does not require inverting a covariance matrix, but it does requi
culating the empirical semivariogram. Computational times associated with the empirical sem
iogram are provided in Figure 2D for the same sample sizes used to benchmark inversions. U
prisingly, the computational time grows with the sample size, increasing to just over a minu
a sample size of 15,000. At a sample size of 15,000, estimating covariance parameters of t
duct, sum-with-error, and product-sum LMM’s could take roughly one minute.
It is clear that CWLS estimation is far more computationally efficient than REML estimatio
en considering REML often needs several inversion iterations (figures 2A and 2B) to converge
olution. But REML often outperforms CWLS in the context of estimation and prediction (Zim
rman and Zimmerman, 1991; Lark, 2000; Ver Hoef and Cressie, 2001; Minasny and McBratne
5; Bevilacqua et al., 2012). In Sections 5 and 6, we explore the balance between performan

d computational efficiency using simulated and real data, respectively.

Simulation Study

We used a simulation study to compare among the product, sum-with-error, and product-su
Ms (dependent random error models), to compare restricted maximum likelihood (likelihoo

sed) and Cressie’s weighted least squares (semivariogram-based) estimation, and to compare t
endent random error models to an independent random error model (estimated using ordina

st squares). The model and estimation method combinations of interest are summarized an
en relevant abbreviations in Table 1.
In total, we considered four separate simulation scenarios. Before discussing the differenc
ong the scenarios, we present their similarities. Each simulation scenario consisted of 20
ependent trials. In each trial, we selected 35 random spatial locations in [0, 1] × [0, 1] an
equally spaced time points in [0, 1]. The response variables, denoted by y, were simulated
combinations of these spatio-temporal locations and had a consistent mean structure. Th
an structure was Xβ ≡ β0 + βsxs + βtxt + βstxst, where xs,xt, and xst are covariates simulat
ependently from zero mean Gaussian distributions with unit variance: xs varies through spa

t not time, xt varies through time but not space, and xst varies through space and time. F
mple, if y is daily maximum temperature, xs may represent elevation, xt may represent da

the-month, and xst may represent precipitation. In all trials, each parameter in β was fixed
o, implying the true variability in y was driven by only the random errors. Though we discu
random errors in more detail in the next paragraph, their covariances always depended o
exponential spatial correlation, Rs ≡ exp(−3||hs||/φ), and the tent (linear-with-sill) tempor

15
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Table 2: Random error structure in simulation scenarios 1 (S1) and 2 (S2).

Cov(δ) Cov(γ) Cov(τ ) Cov(η) Cov(ω) Cov(ν) Total Variance
Scenario 1 4×Rs 4× Is 4×Rt 4× Is 10×Rt ⊗Rs 4× Ist 30
Scenario 2 18×Rs 0× Is 10×Rt 0× Is 0×Rt ⊗Rs 2× Ist 30

relation, Rt ≡ (1 − |ht|/κ) × I{|ht| 6 κ}. In Rs, ||hs|| is the Euclidean spatial distance, an
s the spatial range. In Rt, |ht| is the absolute temporal distance, κ is the temporal range, an
ht| 6 κ} is an indicator variable equaling one if |ht| 6 κ and zero otherwise. These spati
d temporal range parameters were given values φ = 1/

√
2 and κ = 1/2, implying observatio

h spatial distances larger than φ and temporal distances larger than κ were approximate
correlated.
Random errors in Scenario 1 and Scenario 2 were simulated from Gaussian distributions wi
ariance structures in Table 2. In Scenario 1, one-third of the total variance is from the spati
poral dependent random error, and the leftover variability is spread out evenly among t
aining random errors. We expected the sum-with-error LMM may struggle in this scenar

ative to the product and product-sum LMM’s because the sum-with-error LMM lacks a comp
t modeling Rt ⊗Rs. In Scenario 2, the total variance is concentrated in the spatial depende
dom error, temporal dependent random error, and completely independent random error com

nents. We expected the product LMM may struggle in Scenario 2 relative to the sum-with-err
d product-sum LMM’s because the parameter confounding in the product-LMM (11) forces

pletely independent error of zero if the proportion of spatial independent random error an
poral independent random error both equal zero. In Scenario 2, the proportion of spati
ependent random error and temporal independent random error both equaled zero, but t
pletely independent random error equaled two.

Scenarios 3 and 4 had similar structures to Scenarios 1 and 2, respectively, but their erro
re not Gaussian. For each trial in Scenario 3 (or similarly, Scenario 4), the random errors
τ , η, γ, and ν were simulated using a Gaussian distribution and the covariance configuratio
m Scenario 1 (or similarly, Scenario 2). Each random error was then squared and rescaled

sample variance of these squared errors matched the sample variance of the Gaussian error
is squaring and rescaling gives the errors larger tails than would be expected under a Gaussia
tribution.
Of the 1225 elements in y, 1224 (no) elements were randomly treated as training data and us
estimate the covariance parameters and fixed effects. The remaining one (nu) observation w
ated as test data and used to compare against predictions made at its location.
We quantified the effectiveness of each model and estimation combination method by asses
fixed effect and prediction performance. Studying fixed effect performance was importa

ause fixed effects are often used to understand scientific associations between response va
les and covariates. Fixed effect performance was evaluated using type I error rates, mean bia
d root-mean-squared error. Studying prediction performance was important because it is oft
interest to make predictions at unobserved locations. Prediction performance was evaluat
ng prediction interval coverage rates, mean prediction bias, and root-mean-squared-predictio
or. We also quantified the computational cost associated with covariance parameter estimatio
reby providing an initial understanding of the balance between performance and computation
sibility for each model and estimation method combination.
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le 3: Type I error rates of β̂s, β̂t, and β̂st for all model and estimation method combinations (ModelMethod) in all fo
ulation scenarios (S1, S2, S3, S4).

S1 S2 S3 S4

ModelMethod β̂s β̂t β̂st β̂s β̂t β̂st β̂s β̂t β̂st β̂s β̂t β̂st
PREML .139 .050 .110 .091 .400 .084 .093 .145 .052 .257 .277 .105
PCWLS .110 .167 .089 .129 .128 .393 .119 .198 .099 .093 .323 .184
SWEREML .058 .065 .046 .061 .058 .051 .061 .063 .041 .059 .093 .053
SWECWLS .064 .091 .074 .056 .085 .067 .060 .117 .089 .063 .155 .064
PSREML .058 .058 .049 .063 .062 .048 .038 .070 .047 .061 .096 .054
PSCWLS .089 .089 .049 .057 .072 .077 .089 .153 .054 .065 .160 .131
IREOLS .595 .523 .054 .695 .492 .046 .599 .461 .047 .702 .348 .061

le 4: Root-Mean-Squared-Errors of β̂s, β̂t, and β̂st for all model and estimation method combinations (ModelMeth

ll four simulation scenarios (S1, S2, S3, S4).

S1 S2 S3 S4

ModelMethod β̂s β̂t β̂st β̂s β̂t β̂st β̂s β̂t β̂st β̂s β̂t β̂st
PREML .514 .396 .068 .551 .199 .053 .506 .342 .062 .590 .181 .023
PCWLS .513 .400 .069 .488 .185 .059 .506 .342 .067 .573 .159 .026
SWEREML .501 .397 .086 .440 .145 .041 .506 .343 .097 .538 .151 .019
SWECWLS .513 .400 .086 .468 .161 .041 .508 .345 .097 .564 .160 .019
PSREML .493 .391 .064 .442 .145 .041 .487 .337 .061 .537 .154 .017
PSCWLS .515 .399 .066 .470 .159 .042 .501 .344 .065 .565 .157 .019
IREOLS .572 .483 .147 .687 .436 .135 .580 .431 .145 .740 .378 .135

. Fixed Effect Performance

For type I error rates, the test statistic associated with each β parameter equals |β̂|/ŜE(β̂
ere ŜE(·) denotes the estimated standard error. Though the null distributions of these te
tistics are generally unknown, each was approximated by a zero mean Gaussian distributio
h unit variance. As a result, Type I error rates were estimated at a significance level of 0.
calculating the rate at which the the test statistic exceeded 1.96, a standard cutoff for a tw
ed Gaussian hypothesis test. An estimated type I error rate is valid if it is within [0.04, 0.06
ere the half-width of this interval approximately equals the margin of error for a 95% binomi
fidence interval with probability (of rejection) equaling 0.05 and sample size of 2000. Mean bi

s estimated as each β̂’s average deviation from β across the 2000 trials. RMSE was estimat
the square root of each β̂’s average squared deviation from β across the 2000 trials.
Type I error rates are summarized in Table 3 for βs, βt, and βst. PREML and PCWLS type
or rates were generally too large, sometimes as high as 40%. SWEREML, SWECWLS, PSREM

d PSCWLS type I error rates were often valid in S1 and S2 (Gaussian errors), but they tended
slightly larger and outside of the valid range in S3 and S4 (non-Gaussian errors). Furthermor
SWECWLS and PSCWLS type I error rates were usually larger than their REML counterpart

EOLS type I error rates were far too large for β̂s and β̂t but valid or nearly valid for β̂st.
Mean bias was approximately zero for all models and estimation methods in all four scenario
a result, we leave the table summarizing mean bias for the supplementary material.
Root-Mean-Squared-Errors (RMSE) are summarized in Table 4 for βs, βt, and βst. In S1, S

d S4, PSREML had the lowest (best) RMSE, followed closely by PSCWLS and then by the oth
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endent error models. In S2, SWEREML, SWECWLS, PSREML has the same RMSE after roundin
lowed closely by and PSCWLS and then by the product LMM’s. In S1 and S3, the deficienci
the sum-with-error LMM are most apparent in β̂3’s RMSE, which was roughly 25%-50% high
n β̂3 RMSE for the other dependent error models. In S2 and S4, the deficiencies of the produ
M are most apparent in β̂3’s RMSE, which was roughly 30%-50% higher than β̂3 RMSE for t
er dependent error models. Finally, IREOLS had the highest RMSE across all scenarios, an
formance relative to the dependent error models was worst for β̂st. These results showed t

ative discrepancies in RMSE among all models were most drastic for the β̂st estimate associat
h xst, the covariate varying across space and time.
Type I error rate and RMSE performance for β̂3 was much better than β̂1 or β̂2 performan
all models and estimation methods across all simulation scenarios. This likely occurred becau
xs and xt covariates associated with β̂s and β̂t are patterned in space and in time, causin

ticeable variance inflation in the dependent error models (Reich et al., 2006).

. Prediction Performance

We quantified prediction performance by evaluating prediction interval coverage rates, mea
diction bias, and root-mean-squared-prediction error (RMSPE). Recall that in each simulatio

al, we simulated y at all 1225 combinations of 35 spatial locations and 35 time points. Th
andom location was chosen and its associated element in y, denoted by yu, was held out an
d to evaluate prediction performance. We did explore holding out up to 100 y values in ea

al, but there was little change in the prediction performance metrics compared to holding out
gle value. This is likely because of the large number of simulation trials (2000).
We predicted yu and its associated variance using equations (19) and (20) evaluated at

ediction interval coverage rates were estimated by calculating the rate at which each element
is contained in its 95% Gaussian prediction interval. The estimated prediction interval covera
e is valid if it is within [0.94, 0.96], where the half-width of this interval approximately equa
margin of error for a 95% binomial confidence interval with probability (of coverage) equalin

5 and sample size of 2000. Mean prediction bias was estimated as each ŷu’s average deviatio
m yu across the 2000 trials. RMSPE was estimated as the square root of the average of ea
s squared deviation from yu across the 2000 trials.
Prediction interval coverage rates are summarized in Table 5. In S1, coverage rates we
ew percentage points too low for PCWLS and SWECWLS but valid for the other model an
imation method combinations. In S2, coverage rates dropped for all model and estimatio
thod combinations, and only SWEREML and IREOLS had valid coverage rates. The coverage ra
s especially low for PCWLS, which tended to consistently overestimate the spatial and tempor
ge parameters and associated correlation. In S3 and S4, no models or estimation methods ha
id coverage rates, and coverage rates generally decreased relative to their respective S1 and S
nterparts. This drop in coverage rates was likely due to the non-Gaussian errors used to simula
data while a Gaussian assumption was implied while constructing the prediction interva

verage for PCWLS increased in S4 relative to S2, likely because there was less overestimation
strength of the spatial and temporal range parameters and associated correlation.
Mean prediction bias was approximately zero for all models and estimation methods in all fo
narios. As a result, we leave a table summarizing mean prediction bias for the supplementa
terial.
Root-Mean-Squared-Prediction-Errors (RMSPE) are also summarized in Table 5. In S1 an

, PSREML has the lowest (best) RMSPE, followed closely by PREML, PSCWLS, and PCWLS.
se scenarios, RMSPE for SWEREML, and SWECWLS was approximately 26% to 71% high
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le 5: Coverage rate (Coverage) and root-mean-squared-prediction error (RMSPE) for all model and estimation meth
binations (ModelMethod) in all four simulation scenarios (S1, S2, S3, S4).

Coverage RMSPE
ModelMethod S1 S2 S3 S4 S1 S2 S3 S4
PREML .950 .925 .928 .927 2.379 1.764 2.155 0.733
PCWLS .910 .661 .916 .873 2.474 1.848 2.247 0.856
SWEREML .949 .940 .931 .935 3.115 1.500 3.641 0.629
SWECWLS .917 .912 .902 .931 3.114 1.506 3.645 0.654
PSREML .952 .938 .936 .935 2.342 1.504 2.130 0.630
PSCWLS .956 .901 .936 .878 2.388 1.516 2.295 0.705
IREOLS .946 .955 .928 .931 5.215 4.707 5.419 4.885

le 6: The average empirical semivariogram calculation seconds (SV Sec.), average covariance parameter estimati
onds (Est. Sec.), average total empirical semivariogram calculation and covariance parameter estimation secon
t. Sec; the sum of SV Sec. and Est. Sec), and average REML iterations (REML Iter.) for all models and estimati

thods (ModelMethod) in S1.

ModelMethod SV Sec. Est. Sec. Tot. Sec. REML Iter.
PREML NA 5.51 5.51 96.82
PCWLS 0.31 0.08 0.39 NA
SWEREML NA 3.81 3.81 46.94
SWECWLS 0.31 0.18 0.49 NA
PSREML NA 11.00 11.00 58.77
PSCWLS 0.31 0.26 0.57 NA
IREOLS NA 0.01 0.01 NA

n RMSPE for the other dependent error models. Alternatively in S2 and S4, SWEREML has t
est (best) RMSPE, followed closely by PSREML, SWECWLS, and PSCWLS. In these scenario
SPE for PREML, and PCWLS was approximately 5% to 36% higher than RMSPE for the oth
endent error models. Finally, IREOLS had the highest RMSPE across all scenarios.

. Computational Performance

We quantified computational performance by measuring and contextualizing the average tim
uired to estimate the covariance parameters for all models and estimation methods. The
es are summarized in Table 6 for S1. In S1, covariance parameter estimation for PREML to
average of 5.51 seconds and 96.82 iterations, for SWEREML took an average of 3.81 seconds an
94 iterations, and for PSREML took an average of 11.00 seconds and 58.77 iterations. Thoug
erting the product covariance matrix is faster than inverting the sum-with-error covarian
trix, the extra inversions required resulted in the increased computational time for PREM

variance parameter estimation for CWLS generally took around half a second; the majori
this computational burden was from calculating the empirical semivariogram (0.31 seconds
espective of the LMM in question, CWLS estimation was much faster than REML estimatio
dependent error models took far longer to estimate than IREOLS, however.
Though computational performance tables for S2, S3, and S4 are saved for the supplementa
terial, the general takeaways are the same: The speed of REML estimation can vary great
ending on how many iterations are required to converge to a solution, REML estimation is ve

w relative to CWLS estimation, and the most computationally costly part of CWLS estimatio
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Figure 3: Oregon station locations in the training and test data observed for at least one day in July.

calculation of the empirical semivariogram. All computations were performed on an Intel(R
on(R) CPU E5-2690 v3 @ 2.60 GHz processor using a single core and 227 GB of available RAM
rther computational details are provided in the supplementary material.

Application: Oregon Daily Maximum Temperature

It is often of interest to study the effect of environmental variables on daily temperature pa
ns. Oregon is a wet, mountainous state in the United States of America that has varying clima
ions and moderately warm summers. We used the same model and estimation method comb
tions from Section 5 (Table 1) to explain variation in daily maximum temperature (Farenhei
Oregon during each day in July, 2019. Data were obtained through the National Oceanic an
mospheric Administration’s Global Historical Climate Network. To compute distances in term
kilometers, we used a Transverse Mercator projection (Lambert, 1972).
Subsets of the full data were used as training data and test data. The training data contain

servations from 33 randomly selected weather stations at all time points available. Some weath
tions in the training data were not observed at every time point; the training data contain

of the 1023 possible observations. The training data were used to estimate the covarian
rameters and some fixed effects. The test data contained 2000 observations that were random
ected from the full data after removing observations from the training data. The test data we
d to evaluate prediction performance. Unique spatial locations in the training and test da
shown in Figure 3.
We modeled daily maximum temperature having mean structure
≡ β0 + βelevxelev + βdayxday + βprcpxprcp, where xelev is weather station elevation (in mete

ove mean sea level), xday is day-of-the-month, and xprcp is daily precipitation (in millimeters
is mean structure matches the mean structure from the simulation study in Section 5: O
ariate varied through space but not time (elevation), one covariate varied through time but n
ce (day-of-the-month), and one covariate varied through space and time (precipitation). T
pirical spatio-temporal semivariogram suggested the exponential correlation was a reasonab
ice to model the spatial and temporal correlations. The model and estimation methods fro
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le 7: Coverage rates (Coverage), root-mean-squared-prediction-error (RMSPE), semivariogram calculation secon
Sec.), covariance parameter estimation seconds (Est. Sec.), total semivariogram calculation and covariance parame

mation seconds (Tot. Sec; the sum of SV Sec. and Est. Sec), and REML iterations (REML Iter.) for all models a
mation methods (ModelMethod) used to analyze the daily maximum temperature data.

ModelMethod Coverage RMSPE SV Sec. Est. Sec. Tot. Sec. REML Iter.
PREML .895 6.097 NA 12.63 12.63 179
PCWLS .913 7.828 0.17 0.07 0.24 NA
SWEREML .965 4.826 NA 8.62 8.62 95
SWECWLS .907 7.584 0.17 0.16 0.33 NA
PSREML .959 4.644 NA 12.79 12.79 80
PSCWLS .955 6.415 0.17 0.36 0.53 NA
IREOLS .911 8.136 NA 0.01 0.01 NA

tion 5 (Table 1) were used to study estimation, prediction, and computational performance
se data.
All model and estimation method combinations found a strong, positive association betwe
-of-the-month and daily maximum temperature (all Gaussian-based p-values from < .001

8) and a strong, negative association between elevation and daily maximum temperature (a
ussian-based p-values from < .001 to .043). IREOLS found a strong, negative association betwe
cipitation and daily maximum temperature (Gaussian-based p-value < .001), but the depende
dom error models found less evidence of this association (Gaussian-based p-values from .096
4). This discrepancy is likely related to the variance inflation in the dependent random err
dels discussed in Section 5.1, though in the simulation scenarios the inflation was most appare
the parameters associated with the spatially patterned and temporally patterned covariates
Test data prediction performance for each model and estimation method combination was sum
rized using familiar metrics: 95% Gaussian prediction interval coverage, mean prediction bia
d root-mean-squared-prediction-error (RMSPE). Table 7 shows PSREML and PSCWLS had cove

rates closest to 0.95, PSSWE had coverage rates that were slightly too high, and PREML, PCWL

ECWLS, and IREOLS had coverage rates that were slightly too low. Among the depende
or models, PSREML has the lowest RMSPE, followed in order by SWEREML, PREML, PSCWL

ECWLS, and finally PCWLS. The dependent random error models all had lower RMSPE tha
EOLS.
Mean prediction bias was approximately zero for all models and estimation methods. As
ult, we leave summarizing mean prediction bias for the supplementary material.
A fitted semivariogram using the model and estimation combination method yielding the lowe
SPE, PSREML, is provided in Figure 4. Based on Figure 4, this estimated process has spati
ariance decaying to zero at nearly 1,500 kilometers, has temporal covariance decaying to ze
nearly 4 days, and is primarily influenced by the spatial dependent random error.
Computational performance was also summarized in Table 7 for all model and estimatio
thod combinations. Similar to Section 5, REML estimation (8.62 - 12.79 seconds) took f
ger than CWLS estimation (0.24 - 0.53 seconds). All computations were performed on a
el(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz processor using a single core and 227 GB
ilable RAM. Further computational details are provided in the supplementary material.
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ure 4: Fitted PSREML spatio-temporal semivariogram. The fitted semivariogram is viewed with temporal distance
x-axis and spatial distance using line types. The spatial distance of 0+ indicates a right limit approaching zero. T
est variance estimate, σ2

δ (spatial dependent variance or spatial partial sill), is identified using a bracket.

Discussion

In this paper, we described spatio-temporal random processes using linear mixed mode
Ms). This approach builds upon the single random error formulation and partitions sources

tial and temporal variability into distinct random effects. The spatio-temporal LMM’s genera
ible framework accommodates many commonly used covariance functions as special cases.
also be used to model spatio-temporal processes whose covariance functions are not secon

er stationary or not isotropic (isotropy implies the covariance function behaves similarly
directions), though we leave those types of covariance functions for future research. Buildin
m the sum covariance function, we proposed the sum-with-error covariance function, which
ictly positive definite. Though there are many elegant spatio-temporal covariance functions an
imation methods in the literature, we focused on studying three familiar covariance functio
oduct, sum-with-error, and product-sum) and two familiar estimation methods (REML an
LS).
Our novel algorithms manipulate the structure of the product, sum-with-error, and produc
covariance matrices to efficiently invert them, even when every spatial location is not observ

every time point. Though these algorithms are most useful for extending the range of samp
es for which REML estimation can applied, they are also useful for best linear unbiased es
tion of β and best linear unbiased prediction (Kriging). Our algorithms can also be combin
h other computationally efficient approaches that require inversion of a covariance matrix, su
Fixed Rank Kriging.
We found that in the processes we studied, REML estimation tended to outperform CWL
imation, even when the processes’ errors were not Gaussian. But the allure of this increas
formance is diminished when considering the significantly increased computational burden ass
ted with REML estimation. At the lower sample sizes, this computational performance gap m
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t make much practical difference. For example, in S1, the longest average estimation time w
seconds. But as the sample size increases, REML’s computational limitations become a mo
portant consideration. Moreover, model comparison is easier using CWLS estimation becau
main computational burden is calculating the empirical semivariogram, which can be reused
imate covariance parameters of separate models. Estimating covariance parameters of separa
dels using REML estimation, however, requires separate optimization routines, each requirin
eated covariance matrix inversions. One advantage of model selection via REML, however,
t likelihood-based statistics (e.g. AIC) can be leveraged. An alternative approach for REM
imation is to inform model selection through inspection of the empirical semivariogram (or c
iance function) based on the representations in Figure 1 and the supplementary material. The
ualizations can aid in understanding how well each model may perform before estimation. F
mple, if the empirical covariance or semivariogram suggests σ2

ω (the spatio-temporal depende
or) is much smaller than the other variance parameters, the sum-with-error LMM will likely
data well and is more computationally efficient than the product-sum LMM.
We identified scenarios in which the sum-with-error LMM is inferior to the product and produc

LMMs (S1, S3) and scenarios in which the product LMM is inferior to the sum-with-err
d product-sum LMMs (S2, S4, temperature data). And while the product-sum LMM general
formed best, estimating its covariance parameters (using either estimation method) always ha
igher computational cost than estimating the covariance parameters of the other LMMs.
It is important to emphasize that all spatio-temporal random processes have unique chara
istics governing their covariance structure, and even among the model and estimation metho
binations discussed in this paper, there is certainly no combination that is uniformly best f

applications. The balance between model performance and computational efficiency must be
core of a practitioner’s decision making process when determining which model and estimatio

thods to implement.
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