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Abstract

To properly characterize a spatio-temporal random process, it is necessary to understand the pro-
cess’ dependence structure. It is common to describe this dependence using a single random error
having a complicated covariance. Instead of using the single random error approach, we describe
spatio-temporal random processes using linear mixed models having several random errors; each
random error describes a specific quality of the covariance. This linear mixed model formulation
is general, intuitive, and contains many commonly used covariance functions as special cases. We
focus on using the linear mixed model formulation to express three covariance functions: product
(separable), sum (linear), and product-sum. We discuss benefits and drawbacks of each covariance
function and propose novel algorithms using Stegle eigendecompositions, a recursive application
of the Sherman-Morrison-Woodbury formula, and Helmert-Wolf blocking to efficiently invert their
covariance matrices, even when every spatial location is not observed at every time point. Via a
simulation study and an analysis of temperature data in Oregon, USA, we assess computational
and model performance of these covariance functions when estimated using restricted maximum
likelihood (likelihood-based) and Cressie’s weighted least squares (semivariogram-based). We end
by offering guidelines for choosing among combinations of the covariance functions and estimation
methods based on properties of observed data and the desired balance between computational
efficiency and model performance.

Keywords: Correlation Function, Descriptive Model, Geostatistics, Restricted Maximum
Likelihood, Semivariogram, Sherman-Morrison-Woodbury

1. Introduction

Spatio-temporal models are widely used to study random processes in several scientific fields,
including climatology, ecology, environmental science, geography, geology, and others (see Cressie
and Wikle (2011), Wikle et al. (2019), and references therein). Cressie and Wikle (2011) categorize
spatio-temporal models into two broad classes: dynamic and descriptive. Dynamic models are built
from conditional probability distributions; they capture the evolution of a spatio-temporal process
using a Markovian framework. Although dynamic models offer a certain degree of flexibility,
when the primary concern is describing the mean and dependence structures of a spatio-temporal
process, it is common to use descriptive models. More formally, descriptive models are built by
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specifying the first few moments of a probability distribution. In this paper, we build descriptive
spatio-temporal models using a linear mixed modeling approach and show how several commonly
used covariance functions are special cases of this general formulation.

Consider the spatio-temporal model

y = X0+ ¢, (1)

where y = {y(s;,t;)} is a spatio-temporal process, X = {x(s;, t;)} is a design matrix of covariates
controlling the impact of B on y, B is a vector of fixed effects specifying the mean (coarse-scale)
of y, and € = {€(s;,t;)} is the random error (fine-scale) of y. The set {(s;,t;)} contains spatio-
temporal locations in S x T, where S = {s; : i =1,...,S} is a set of spatial locations in R?, and
T={t;:j=1,...,T} is a set of time points in R'. If y is observed at every combination of the
S spatial locations and 7" time points, then y has ST elements and {(s;,t;)} =S x T. If y is not
observed at every combination of the S spatial locations and 7" time points, then y has fewer than
ST elements and {(s;,t;)} C S x T.

The dependence structure of y in equation (1) is determined by €. When € is second-order
stationary in space and in time, the covariance between any two elements of y does not depend
on their specific spatio-temporal locations; the covariance between these elements only depends
on their spatial separation, h,, and their temporal separation, h;. Even when € is second-order
stationary in space and in time, it is challenging to generate classes of spatio-temporal covariance
functions that are strictly positive definite. A covariance function is strictly positive definite if
its associated covariance matrix is positive definite, while a covariance function is positive definite
if its associated covariance matrix is only positive semi-definite. Strict positive definiteness is
required for the covariance matrix to be invertible, and this inverse is often necessary to estimate
3 in equation (1), the parameters composing € in equation (1), or to make unique predictions
at unobserved locations (Kriging). For a thorough review of strict positive definiteness and its
implications on spatio-temporal covariance functions, see De Taco and Posa (2018) and De Iaco et al.
(2019). In this paper, we focus on three covariance functions that can be strictly positive definite:
product (separable) (Posa, 1993; Haas, 1995; De Cesare et al., 1997), sum (linear) (Rouhani and
Hall, 1989), and product-sum (De Cesare et al., 2001; De laco et al., 2001).

The product (separable) covariance function is

C(hsa ht) = Cs(hs)c(ht)’ (2>

where Cs(hy) is a spatial covariance function, and C;(h;) is a temporal covariance function. Product
covariance functions are strictly positive definite when both C,(hs) and C;(h;) are strictly positive
definite (De Iaco et al., 2011). The product structure of this covariance function is restrictive
and often unrealistic because of a proportionality implication. Viewed as a function of space
(or similarly, time), the product covariance function at separate h; (or similarly, hy) values are
proportional. This further implies that for the product covariance function, no amount of spatial
covariance is separate from temporal covariance: For example, as C;(h;) approaches zero, so does
C(hg,hy), irrespective of Cs(hs). Despite this drawback, product covariance functions are often
used in practical applications even when their use is not physically justifiable (Gneiting et al.,
2006). This is primarily because when {(s;,t;)} = S x T, obtaining the inverse of the product
covariance matrix is computationally efficient. Unfortunately this computational efficiency is lost
when {(Sl‘,tj)} CSxT.



The sum (linear) covariance function is
C(hs, ht) - Cs(hs) + Ct(ht) (3)

Though free from the proportionality implication restricting the product covariance function, the
sum covariance function has a different restriction: When both Cy(hs) and Ci(h;) are strictly
positive definite, the sum covariance function is not guaranteed to be strictly positive definite, it is
only guaranteed to be positive definite (Myers and Journel, 1990). Though likely a logical choice
to model the covariance of many spatio-temporal processes, the practicality of the sum covariance
function is largely diminished by the lack of strict positive definiteness. In contrast to the product
covariance matrix, the sum covariance matrix does not have a computationally efficient inverse (if
it exists) when {(s;,t;)} =S x T.

A straightforward extension of the product and sum covariance functions yields the product-
sum covariance function. The product-sum covariance function is

C(hy, hy) = kiCy(hy)Co(hy) + koCy(hy) + ksCi(hy), (4)

where kq, ko, and k3 are nonnegative weightings among the three components. Product-sum
covariance functions are strictly positive definite when k; is positive and both C,(hy) and C;(h;) are
strictly positive definite. Their flexible, intuitive form is free from the proportionality restriction
of the product covariance function and the positive definite restriction of the sum covariance
function. Because of this, product-sum covariance functions have been used to model many spatio-
temporal processes in a variety of disciplines (De Iaco et al., 2015). Like the sum covariance
matrix, the product-sum covariance matrix does not have a computationally efficient inverse when
{(si,t;)} =S x T.

As illustrated by equations (2), (3), and (4), spatio-temporal covariances can involve com-
plicated functions of several parameters. Rather than modeling these parameters using a single
random error, we can isolate specific qualities of the covariance structure by incorporating several
random errors that connect variance components to covariance functions. These random errors
can be regarded as random effects in the linear mixed model

y=XB8+Zwu+...+Zu,+v, (5)

where X3 is the mean structure from equation (1), u; is the ith random effect, Z; is the design
matrix corresponding to u;, and v is random error that is independent for each observation (i.e.
completely independent random error). The u and Z terms from equation (5) are related to spatial
and temporal locations in Section 2.

The rest of this paper is organized as follows. In Section 2, we describe spatio-temporal pro-
cesses using a linear mixed model formulation. We link this linear mixed model formulation to
the product (2), sum (3), and product-sum (4) covariance functions and introduce an adjust-
ment to the sum covariance function, which we call the sum-with-error covariance function. The
sum-with-error covariance function is more flexible than the sum covariance function, is strictly
positive definite, and has a computationally efficient matrix inverse. In Section 3, we discuss
covariance parameter estimation using likelihood-based and semivariogram-based methods and
give an overview of spatio-temporal prediction (Kriging). In Section 4, we develop a novel al-
gorithm used to efficiently invert product, sum-with-error, and product-sum covariance matrices,
even when {(s;,t;)} C S x T. Via a simulation study (Section 5) and an analysis of temperature
data (Section 6), we compare the computational and model performance among the product, sum-
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with-error, and product-sum covariance functions estimated using restricted maximum likelihood
(likelihood-based) and Cressie’s weighted least squares (semivariogram-based). Finally, in Section
7, we conclude with a general discussion and provide directions for future research.

2. A Linear Mixed Model Formulation for Spatio-Temporal Random Processes

The linear mixed model formulation in equation (5) is a general approach that can be used to
model many spatio-temporal random processes. Building from Cressie and Wikle (2011, p. 304),
consider the second-order stationary (in space and in time) linear mixed model

y=XB+Z,0+Z~y+ 2Tt +Zin+w+ v, (6)

where y is an n x 1 response vector, X is an n X p design matrix of covariates, 3 is a p X 1
parameter vector of fixed effects, Z, is an n x S design matrix whose rows reference unique
spatio-temporal locations and columns reference S unique spatial locations, and Z; is an n x T
design matrix whose rows reference unique spatio-temporal locations and columns reference T
unique time points. For a general spatio-temporal location (s;,t;), the corresponding row in
Z, equals one in the i'" column and zero elsewhere, and the corresponding row in Z, equals
one in the j™ column and zero elsewhere. For a simple example of Z, and Z,, consider

y = {y(s1,t1),y(s2,t1),y(s3,t1),y(s1, t2), ¥(S2, t2) }. Then

1 00 10
010 10
Z,= (0 0 1|, and Z;= (1 O
100 01
010 01

The random effects in equation (6), &,7,7T,n,w, and v, are zero-mean vectors. The vectors
4,7, and w are the spatial, temporal, and spatio-temporal dependent random errors, respectively.
The vectors v and 1 are the spatial and temporal independent random errors, respectively. The
vector v is completely independent random error at each spatio-temporal location. The completely
independent random error is common to standard linear regression models, and its inclusion in
spatio-temporal models adds an extra layer of flexibility. We call equation (6) the spatio-temporal
linear mixed model (spatio-temporal LMM).

Each random effect in the spatio-temporal LMM has a unique covariance: Cov(d) = iR,
Cov(y) = 2L, Cov(T) = 0?Ry, Cov(n) = o:1;, Cov(w) = 0ZRy, and Cov(v) = 07Ly. The ma-
trix subscripts, s, t, and st, indicate spatial-only, temporal-only, and spatio-temporal interaction
components of the covariance, respectively. These matrix dimensions, as well as the dimensions
of §,v,7,n,w, and v, follow directly from equation (6). Each component of these covariance
matrices involves the product of a variance parameter and an R matrix or an I matrix. The R
matrices model random errors having correlation and depend on range parameters controlling the
correlation’s behavior as a function of distance. Some examples of correlation functions commonly
used to model the R matrices include the exponential, spherical, Gaussian, Matérn (Cressie, 1993,
pp. 85-86, p. 94), or auto-regressive-integrated-moving-average (ARIMA) (Shumway and Stoffer,
2017, p. 134) functions. The variance parameters multiplied by the R matrices are commonly re-
ferred to as dependent random error variances or partial sills. The I matrices are identity matrices
modeling independent random errors. The variance parameters multiplied by the I matrices are
commonly referred to as independent random error variances or nuggets. It is worth noting that
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Figure 1: Covariance function behavior in the spatio-temporal LMM. In (A), the covariance function is viewed with
temporal distance on the x-axis and spatial distance using line types. In (B), the covariance function is viewed with spatial
distance on the x-axis and temporal distance using line types. Distances of 07 indicates a right limit approaching zero.
The variance parameters o2 (spatial dependent variance), O',ZY (spatial independent variance), o2 (temporal dependent
variance), and 03, (temporal independent variance) are identified using brackets. The o2 parameter denotes the sum of
all variance components (the overall variance).

equation (6) only requires specification of y’s first two moments and does not inherently rely on
any distributional assumptions.

Assuming mutual independence among the random effects in equation (6), the covariance ma-
trix for y, denoted by X, is

Y = 0;Z,R,Z, + 022, Z,, + 02Z, R Z; + 0, Z,Z;, + 0. Ry + 0. L. (7)

Several families of commonly used spatio-temporal covariance functions can be expressed as a
special case of equation (7); Montero et al. (2015) and Porcu et al. (2019) provide thorough reviews
of many of these families. For example, the Gneiting covariance function (Gneiting, 2002) can be
obtained through specification of o2R; while setting all other variance parameters equal to zero.
In further subsections, we show how the product, sum-with-error, and product-sum covariance
functions are special cases of equation (7).

An understanding of equation (7) can be aided by through visualizations. The variance param-
eters can be uniquely identified through linear combinations of limiting cases of the R matrices,
and Figure 1 shows how to clearly represent o3, 02, 07, and o7. Further details and equivalent
representations using semivariograms (semivariograms are discussed in Section 3.2) are provided
in the supplementary material.

2.1. The Product Linear Mixed Model

Suppose the spatial dependence in y has covariance matrix C, = o2[(1 — 75) R, + m,1,], where

o2 is the overall spatial variance (sill), and 74 is the proportion of o2 attributable to independent
random error (proportion of nugget variance). Analogously suppose the temporal dependence in

y has covariance matrix C; = ¢?[(1 — m;)R; + m1;]. The product covariance matrix of y is

> =7%,C,Z. ®7,CZ; = 020 (Z,R:Z. © Z,R}Z,), (8)



where ® denotes the Hadmard (element-wise) product, R} = C,/0?, and R} = C;/0c?. The vari-
ance parameters in equation (8) are not identifiable individually, but their product is identifiable.
Reparameterizing 02 = o207} to ensure identifiability of the variance parameter yields the following
product covariance matrix:

Y =02(Z,RZ, © Z,RZ,) = 0’ Ry, (9)

where Ry = (Z;R:Z, © Z,R;Z;). Written this way, it becomes clear that the covariance matrix
in equation (9) is the covariance matrix of a special case of the spatio-temporal LMM. More
specifically, this special case is

y=XB+w, (10)

where Cov(w) = 02Ry; and Ry = (Z,R:Z, ® Z;R;Z;). We define the model in equation (10)
with the covariance matrix in equation (9) as the product linear mixed model (product LMM).
Expanding equation (9) further details its product structure:

> = 3)(1 — 773)(1 — Ft)(ZSRSZ; ® ZthZ::) (11)
+ oo (1 —m)(m)(ZR,Z, © Z,1,Zy)

+ Ui(%)(l - Wt)(ZsIsZ/s © ZthZ;)
+o2(

w TFS)(Wt)(ZSIsZ; © ZtItZ:g)y

Equation (11) highlights the explicit dependence among the variance parameters, making clear
the restrictions of this product structure. For example, when 7, tends towards zero, then
(1 — m)wsRy ® I, a function of the temporal correlation, also tends towards zero.

2.2. The Sum-With-Error Linear Mized Model
Another special case of the spatio-temporal LMM is

y=XB+Z6+Zs~+7ZiT+Zn. (12)
Equation (12) has covariance matrix
S = 02Z,R,Z. + 0°Z,Z, + 0’ ZRZ, + 0°Z,Z,

which is the matrix representation of the sum covariance function. As mentioned in Section 1,
a significant drawback of the sum covariance function is that it is not guaranteed to be strictly
positive definite. We can instead consider a model of the form

yv=XB+Z0+Z~+Z;7+Zin+v, (13)
which has covariance matrix
Y = 0;Z,RZ, + 022, Z, + 02Z R, Z; + 0. L L, + o, L. (14)

We call the model in equation (13) with the covariance matrix in equation (14) the sum-with-
error linear mixed model (sum-with-error LMM). We call the covariance function whose matrix
representation is equation (14) the sum-with-error covariance function. The sum-with-error co-
variance function is certainly more flexible than the sum covariance function, as the sum co-

6



variance function is a special case of the sum-with-error covariance function. Furthermore, the
sum-with-error covariance function is strictly positive definite. A proof of this statement is in-
cluded in the supplementary material and relies on the positive semi-definiteness of the matrix
03Z,RZ, + 021, 7] + 02ZRyZ; + 07,7} and the positive definiteness of the matrix o7 L.

2.3. The Product-Sum Linear Mized Model

Consider the full spatio-temporal LMM (6) with covariance matrix from equation (7). If Ry
in equation (7) equals (Z;RsZ.) ® (Z;R,Z}), the covariance matrix is

The model in equation (6) with the covariance matrix in equation (15) is the product-sum linear
mixed model (product-sum LMM). The product-sum LMM combines components of both the
product LMM and the sum-with-error LMM. It is not bound by the proportionality implication
of the product LMM, and unlike the sum-with-error LMM, the product-sum LMM contains a
product term. The product-sum LMM’s covariance matrix in equation (15) does not always equal
the matrix representation of the original product-sum covariance function in equation (4). In
equation (15), the product term does not contain independent error components. But unlike
the original product-sum covariance function, equation (15) enables complete variance component
separation. This complete variance component separation makes it straightforward to isolate
variance parameters and partition sources of error.

The product-sum LMM’s covariance matrix could even be made more flexible by letting Ry
equal (ZSRSZ’S) ® (ztﬁtz;), where R, and Ry are different from R, and Ry, respectively. Though
this yields a more general family of covariance functions, we do not focus on this case in this
paper for a few reasons. First, the original product-sum covariance function specifies the same
spatial and temporal covariance functions for the sum and product terms. Second, interpreting
and visualizing the behavior of relevant spatial and temporal correlation functions, as in Figure 1,
is less intuitive when accommodating f{s and f{t. Third, the additional parameters in f{s and
R, make estimation more challenging by increasing both the dimensionality of the optimization
and the difficulty associated with identifying unique covariance function components. We discuss
estimation in more detail next.

3. Parameter Estimation and Prediction

The covariance parameters and fixed effects of the models in Section 2 generally require es-
timation. In this section, we review parameter estimation using restricted maximum likelihood
(REML) (Patterson and Thompson, 1971; Harville, 1977) and Cressie’s weighted least squares
(CWLS) (Cressie, 1985), two commonly used parameter estimation methods. We then review best
linear unbiased prediction (Kriging). We end the section by discussing alternative estimation and
prediction approaches.

8.1. Restricted Maximum Likelihood Estimation
Minus twice a profiled Gaussian log-likelihood is

—200ly) =In|Z|+ (y - XB)Z ' (y - XB) + a1, (16)

where y is a vector of response variables, @ is a vector of covariance parameters, 3 is a covariance

matrix, |.| denotes the determinant operator, 3 = (X'X7'X)'X'S7'y, and ¢; is an additive
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constant. Minimizing equation (16) yields én}l, the maximum likelihood (ML) estimator of 6.
In general, no closed-form solution exists for 6,,,, and it must be solved for numerically After

obtaining 6,1, a closed form solution for the ML estimator of B exists: B = (X Esz) 1X’Zmly7
where Zml is X evaluated at Oml instead of 8. Unfortunately, Hml can be badly biased for 8 because
equation (16) does not account for the simultaneous estimation of @ and 3. To address this bias
problem, Patterson and Thompson (1971) propose transforming equation (16) using random error
contrasts, which results in a new likelihood: The restricted (or residual) Gaussian likelihood.
Wolfinger et al. (1994) shows that minus twice the profiled restricted Gaussian log-likelihood is

—2lr(0ly) = —20(0)y) + In |X'E"'X]| + ¢2, (17)

where ¢, is an additive constant. Minimizing equation (17) yields érgmly the restricted max-
imum likelihood estimator (REML) of 6. Similar to ML estimation, 0,., must generally be
solved for numerically, but then a closed-form solution for the REML estimator of 3 exists:

Bremi = (X Zrele) 1X'Emmly Equations (16) and (17) can also be further profiled by their
overall variance, reducing the number of parameters in 6 requiring estimation by one (Wolfinger
et al., 1994). Because of the bias problem in ML estimation, we focus only on REML estimation
henceforth.

When y is Gaussian, éreml has several attractive statistical properties: It is computed from
unbiased estimation equations (Heyde, 1994; Cressie and Lahiri, 1993, 1996); under appropriate
regularity conditions, it is consistent, asymptotically efficient, and asymptotically Gaussian (Sweet-
ing, 1980; Mardia and Marshall, 1984; Cressie and Lahiri, 1993); and its standard errors can be
estimated using the expected or observed Hessian (Cressie and Lahiri, 1993). For REML estima-
tion, model selection can be performed using likelihood-based statistics such as AIC (Akaike, 1974)
or a likelihood-ratio test for nested models.

When y is not Gaussian, éreml is still computed from unbiased estimating equations (Heyde,
1994; Cressie and Lahiri, 1993, 1996). This is a crucial result because it implies y does not have
to be Gaussian for @, to be unbiased. To illustrate a familiar example, suppose y has mean
X3 and common independent variance o?I. The standard ordinary least squares estimate of

Zisst=(y — X[;’)’(y - X,é)]/(n — p), where n is the sample size, p is the dimension of 3, and
B = (X'X)"'X'y. It is well known s? is unbiased for 0% even when the distribution of y is unknown.
Furthermore, it is straightforward to show that the REML estimate of o2 is s2. More generally,
irrespective of y’s distribution and under appropriate regularity conditions, Bmml is unbiased,
consistent, asymptotically Gaussian, and asymptotically efficient (Theil, 1971; Fuller and Battese,
1973; Schmidt, 1976; Judge et al., 1985; Schabenberger and Gotway, 2017). Together, REML’s
unbiased estimating equations for @ and attractive asymptotic results for 38 highlight its usefulness
when y is not Gaussian.

Though these aforementioned properties of O, are certainly attractive, REML suffers from
computational limitations as the sample size grows. This is because numerical minimization of
equation (17) requires repeated inversion of 3, and the computational cost of inversion is cubic in
the sample size.

3.2. Semivariogram-Based Estimation Using Cressie’s Weighted Least Squares

Instead of covariance functions, spatio-temporal dependence can be described using semivar-
iograms. The spatio-temporal semivariogram quantifies the variability in the differences among
elements in y as a function of the spatial and temporal distances between these elements. Cressie
and Wikle (2011) provide a thorough description and review of spatio-temporal semivariograms

8



and discuss the one-to-one correspondence between spatio-temporal covariance functions and semi-
variograms when the random processes is second-order stationary in space and in time (we also
provide this one-to-one correspondence in the supplementary material).

Starting with the spatio-temporal LMM in equation (6), define € = y — X3. The spatio-
temporal semivariogram for €, denoted by +.(hs, h;), depends on the same parameter vector € that
the covariance function does. Before estimating 6, however, we must first estimate 7, (hg, h;). This
is often accomplished by using an estimator that moment-matches 7. (hg, h;) at a set of fixed spatial
and temporal distance classes (Cressie and Wikle, 2011). This estimate of 7.(hs,h;), denoted
by 4.(hg, hy), is commonly referred to as the empirical semivariogram for e. After calculating
the empirical semivariogram, 6 can be estimated using a least squares approach. Least squares
approaches estimate @ by minimizing a sum of squares involving 4.(hy, h;) and 7.(hs, h;). The
least squares approach we focus on is Cressie’s weighted least squares (CWLS), where numerical
minimization of

ZwiHE(thht)i - 'Ye(hmht)i]Z (18)

yields 0., In equation (18), i indexes the spatio-temporal distance classes used to com-
pute J.(hg,hy), |N(hg h)| denotes the number of observations in the distance class, and
w; = |N(hg, hy)i|ve(hs, hy); 2. We focus on CWLS because it commonly used and computation-
ally efficient. Reviews of other semivariogram-based estimation approaches are outlined by Cressie
(1993), Lahiri et al. (2002), and Schabenberger and Gotway (2017).

In practice, we do not observe a realization of €, and it must be estimated. One estimate,
denoted by €, is the vector of ordinary least squares residuals. Unfortunately 9:(hs, hy) is an
estimate of v;(hs, h;), not an estimate of v.(hg, hy). An implication is that 9;(hs, h;) is biased for
Ye(hg, hy), though this bias decreases as the sample size increases (Cressie, 1993, pp. 166-168).

After computing 4:(hy, b;) and using CWLS (18) to estimate 6., empirical (feasible) gener-
alized least squares (EGLS) can be used with 6, to estimate B: Beyis = (X’ﬁ];;lsX)‘lX’ﬁ];wlsy.
This estimate has the same form as B,em — they only differ in the 6 used to compute ¥ AL
ter computing Bews, we can compute EGLS residuals and use them to recompute Fe(hg, hy), 0,
and Bcwls‘ This iterative re-estimation process can continue until some convergence criterion is
satisfied, though Kitanidis (1993) and Ver Hoef and Cressie (2001) observed additional iterations
generally had little impact on their model performance.

Under appropriate regularity conditions, 9cwls is consistent and asymptotically Gaussian (Lahiri
et al., 2002). Like Braml; Bcwls is unbiased and under appropriate regularity conditions is consis-
tent, asymptotically Gaussian, and asymptotically efficient. The main computational burden of
CWLS is calculating the empirical semivariogram, not minimizing equation (18) — equation (18)
tends to be very computationally efficient. Once the empirical semivariogram has been calculated,
comparing the fit of different dependence structures using CWLS estimation only requires separate
minimizations of (18). To compare two dependence structures using REML, however, the REML
likelihood must be maximized twice, which can be time consuming for large sample sizes due to
the matrix inversions required.

Unfortunately there are some drawbacks to CWLS estimation. Most notably, CWLS estima-
tion requires the specification of arbitrary spatial and temporal distance classes used to compute
the empirical semivariogram, and different choices of distances classes impact parameter estimates
and model performance. If calculating 4. (hs, h;) requires averaging within distance classes, CWLS

estimation also results in some loss of detail regarding the underlying process. Additionally, 6.,



is only asymptotically efficient in special cases, and obtaining its standard errors is less straight-
forward than for REML estimation (Lahiri et al., 2002).

3.3. Prediction

Spatio-temporal prediction is often the primary goal of a data analysis. It is usually desired
that these predictions are in some sense optimal. In this context, we consider a predictor optimal if
it is unbiased, linear, and has minimum variance within the class of all unbiased, linear predictors;
this predictor is often referred to as a best linear unbiased predictor (BLUP) or a Kriging predictor.
Consider the structure of y in the spatio-temporal LMM (6), and let y be a vector of unobserved
variables coming from the same distribution. When 3 is unknown and 6 is known, the (BLUP) of
y is given by

Verue = XB +¢X 7 (y — XB), (19)

where X is the design matrix of covariates at the prediction locations, 8 = (X' X) ' X'sy,
and ¢ = Cov(y,y) (Cressie, 1993, p. 173). The covariance of ypLup is given by

Cov(ygrup) = ¥ — ¢X7'¢ + HX'S 'X)'H, (20)

where 3 is the covariance matrix of y, and H = (X — ¢X7'X) (Cressie, 1993, p. 173). If 0 is
unknown, the quantities in equations (19) and (20) involving @ are instead evaluated at 6. In
this context, the predictor is instead referred to as an empirical best linear unbiased predictor
(EBLUP) and is denoted by ygpLup-

8.4. Alternative Approaches to Estimation and Prediction

Though we focus on REML estimation, CWLS estimation, and best linear unbiased prediction,
it is important to acknowledge that these estimation and prediction approaches require the inverse
of an n X n matrix, where n is the sample size: REML requires several n x n inverses to iteratively
estimate @ and one n X n inverse to estimate 3, CWLS requires one n X n inverse to estimate
3, and best linear unbiased prediction requires one n X n inverse. Directly inverting an n x n
matrix has computational cost O(n?), which makes covariance matrix inversion more challenging
as the sample size increases. This challenge has generated a wide array of research focused on
alternative estimation and prediction approaches that avoid n x n matrix inversions, either by
approximating the inverse or by using an approach that does not depend on the inverse. Heaton
et al. (2019) provides a thorough overview of several of these alternatives and compares them on
real and simulated data. Our novel, computationally efficient approach is described in Section 4
and leverages the structure of the product, sum-with-error, and product-sum covariance functions
to compute exact covariance matrix inverses without having to invert any n x n matrices.

4. Efficient Covariance Matrix Inversion

As mentioned in Section 3.4, we propose a novel computational approach that leverages the
structure of the product, sum-with-error, and product-sum covariance matrices to compute ex-
act inverses without having to invert any n X n matrices. Our approach is purely algorithmic,
which has two attractive implications. First, our approach solves the exact inverse of these co-
variance matrices without requiring approximations. Second, our approach can even be combined
with alternative approaches to further reduce computational costs associated with estimation and
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prediction. For example, our efficient inversion algorithms could be combined with the low-rank
representations used by Fixed-Rank Kriging (Cressie and Johannesson, 2008; Zammit-Mangion
and Cressie, 2017). Next, we describe these algorithms and discuss how they change whether
{(si,t;)} =S x T or {(s;,t;)} €S x T. We then provide some computational benchmarks.

4.1. Inverse Computations When {(s;,t;)} =S x T
We previously mentioned that when {(s;,t;)} =S x T, product covariance matrices have a
Kronecker structure facilitating efficient inverse computation. Suppose the data are ordered by
space within time: y = {y(s1,t1),y(s2,t1),.-.,y(S1,t2),¥(S2,t2),...,v(ss,t7)}. In this context,

the inverse of the product LMM’s covariance matrix (9) can be expressed as
X =[(R)) @ RY) /0]

w*

(21)

Equation (21) is computationally efficient because it only requires one set of O(S?) floating point
operations (flops) and one set of O(T?) flops for inverses; this is substantially less demanding than
the O(S3T?) flops required to compute the inverse using a algorithm that does not take advantage
of the Kronecker structure, such as the Cholesky decomposition.

The sum-with-error LMM’s covariance matrix (14) has an efficient form that can be exploited
by an iterative application of the Sherman-Morrison-Woodbury formula (Sherman, 1949; Sherman
and Morrison, 1950; Woodbury, 1950). It is first helpful to rewrite equation (14) using condensed
notation:

Y = 7,57, + Z,SZ, + 0’1,

where X, = 0jR,+02I, and X, = U?_RrFO'gIt. The first step in computing X~ requires computing
(Z;3,Z) + 021,)~" using the Sherman-Morrison-Woodbury formula. This inverse, denoted by
SMW (a1, 3, Z;), can be expressed as

vost

SMW (071, 3, Zy) = (071s) " — (070a) " Zo(B, " + Ziy(00 L) " Ze) Ziy(07Lsr)
Another application of the Sherman-Morrison-Woodbury formula can be used to compute
(Z2.2.Z!, + 7,37, + 021,)"", which equals ¥7". The entire algorithm is expressed compactly
as
' = SMW(SMW (021}, 3, Zy), s, Zs). (22)

Equation (22) is computationally efficient because the inner SMW(+) requires two sets of O(T?)
flops for inverses, and the outer SMW(+) requires two sets of O(S?) flops for inverses. Furthermore,
the sparsity of Z, and Z; can be used to avoid direct multiplications in products involving these
matrices. Because the sum covariance (3) matrix lacks o2l its inversion (if it exists) requires
O(S*T?) flops because the Sherman-Morrison-Woodbury formula cannot be recursively applied.

The covariance of the product-sum LMM (15) has an efficient form that can be exploited
by Stegle eigendecompositions (Stegle et al., 2011) and an iterative application of the Sherman-
Morrison-Woodbury formula. Equation (15) can also be rewritten using condensed notation:

=727 + 7,37, + 3,

where 3, = 0jR,+021,, 5, = Uth—FO'gIt, and X = 02R;®@R+021,;. The first step in computing
37" is using the Stegle eigendecomposition of X,;. Let U,P,U. be the eigendecomposition of Ry
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and U,P, U/ be the eigendecomposition of R;. Then X_/, denoted by STE(X,;), can be expressed
as

STE(XZy) = (WV V) (WV1/2), (23)

where W = U; ® Uy and V = ¢2P; ® P, + 021, ® I,. Because P, and P; are diagonal matrices
of eigenvalues, V is diagonal, and computing V~'/2 is trivial. In the second part of the algorithm,
the Sherman-Morrison-Woodbury formula is used to compute (Z,;3,Z; + X))~

SMW(E,), 350, Zy) = By — 3 Z(3, + L3, Z,) 7%,

The third part of the algorithm uses another application of Sherman-Morrison-Woodbury formula
to compute (Z,X,Z,, + Z,;3,Z, + X4)~", which equals £7'. The entire inversion algorithm is
compactly expressed as

$ = SMW(SMW (STE(Zy,), &4, Zy), s, Zs). (24)

Equation (24) is computationally efficient because STE(+) requires one set of O(S5®) flops and one
set of O(T?) flops for eigendecompositions, the inner SMW(+) requires two sets of O(T?) flops for
inverses, and the outer SMW (+) requires two sets of O(S?) flops for inverses, far fewer than O(S3T?)
flops. The computational efficiency of equation (24) can be further improved by incorporating two
additional tools. First, as with the sum-with-error LMM, the sparsity of Z, and Z; can be used to
avoid direct multiplications in products involving these matrices. Second, ¥~ can be multiplied
on the right by X, y, and ¢ = Cov(y,y), where y is a vector of new y’s to predict. This operation
makes it possible to avoid direct multiplication of the two ST x ST matrices in equation (23) while
obtaining the products ¥7'X, ¥y, and X 7'¢. These products can be used for estimation and
prediction without actually requiring ¥~". We provide analogous forms of equations (21), (22),
and (24) for log determinants in the supplementary material.

4.2. Inverse Computations When {(s;,t;)} CSx T

It is common in practice to be missing at least one element of {(s;,t;)} from S x T. When
{(si,t;)} €S x T, equation (22) is unaffected because it does not rely on Kronecker products.
Equations (21) and (24), however, cannot be used directly because the efficient form for the
inverse (or eigendecomposition) of a Kronecker product is lost. Next we show how to incorporate
Helmert-Wolf blocking (Wolf, 1978) when {(s;,t;)} € S x T to retain most of the computational
efficiency gained by equations (21) and (24).

Before illustrating the usefulness of Helmert-Wolf blocking, suppose y is now more general and
contains elements we observe and elements we do not observe. In this context, y can always be
partitioned by two components. The first component is y,, an n, X 1 vector of observable elements
whose spatio-temporal locations form a subset of S x T. The second component is y,, an n, X 1
vector of unobservable elements whose spatio-temporal locations are those in S x T missing from
the spatio-temporal locations in y,. Because y, and y, are distinct, and the union of their spatio-
temporal locations equals S x T, it follows that n, + n, = ST. The covariance matrix of y can be
written in block form:

x= [Euo zuu] : (25)
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where ¥,, = Cov(yo, Yu), Zow = Cov(Yu,¥o), Zue = Cov(yy,¥,), and Xy, = Cov(yy,y.). Gen-
erally, X,,, X, and X, are not useful because estimation and prediction only requires Egj, the
inverse of the covariance matrix of y,. But in this context, the block representation in equation (25)
is relevant because it corresponds to a spatio-temporal process where {(s;,t;)} =S x T. Though
we have not observed y,, we do know its spatio-temporal locations are the elements of S x T
missing from the spatio-temporal locations of y,. With a second-order stationarity assumption in
space and in time, we can use the spatio-temporal locations of y, and y, to construct X.,, 3o,
and X, and by consequence, 3. After ordering ¥ by space within time, equations (21) or (24)
can be applied. Then the space within time ordering can be undone, finally yielding ¥~ '. Like 3,
3" can be expressed in block form:

-1 z~)oo Z~30u
2 — ~ ~ L
|:Euo Euu:| ’

where the dimensions of the blocks in ¥~ match the dimensions of the blocks in ¥. Helmert-Wolf
blocking enables recovery of 3. through the following matrix operation:

~ ~ —1 ~

IJSIESS S Y Y0 Y (26)
The main computational burden in equation (26) is inversion of 3,,, which must be computed
directly. If n, is small, this additional computation cost is minimal, and using equation (21) or (24)
in combination with equation (26) is nearly as fast as directly applying equation (21) or (24). For
the product-sum LMM, the multiplication of two ST x ST matrices can be avoided by computing
> X,, X0y, and X, ¢ instead of X_,. Finally, an analogous result for equation (26) exists for
log determinants and is provided in the supplementary material.

4.8. Computational Benchmarks

We compared the algorithms from sections 4.1 and 4.2 to a Cholesky decomposition approach for
various spatio-temporal sample sizes ranging from 1,000 to 15,000. Inversion times were recorded
as the product of 7" with a fixed effect design matrix, X, and the product of £~ with a response
vector, y (recall ¥7'X and X'y are required for estimation of 3). In our application, X has four
columns and y has one column. These dimensions were chosen to match the dimensions of X and
y in Sections 5 and 6. Other decompositions in combination with linear forward solves can be used
for estimation of 6, estimation of 3, and prediction, but we focus on comparing to the Cholesky
decomposition approach because it yields convenient forms for log determinants (required during
REML estimation) and directly solves ¥ 'X and X'y in a straightforward manner.

The average inversion times for the Cholesky decomposition inversion approach were much
slower than for our algorithms, especially at the larger sample sizes (figures 2A and 2B). Among
our algorithms, the product was the fastest, followed by the sum-with-error and then the product-
sum. The ratio of times for the Cholesky decomposition inversion approach to times using our
algorithms increased with the sample size (Figure 2C). Together, figures 2A, 2B, and 2C show these
product, sum-with-error, and product-sum algorithms can vastly increase the speed associated with
REML estimation of @ and 3, CWLS estimation of 3, and best linear unbiased prediction by more
quickly acquiring the products involved with X~'. But these computational gains are especially
important for REML estimation of 8 because of the repeated inversions of the covariance matrix
required. For each of the three algorithms, suppose REML estimation requires 60 iterations to
converge to a solution. Figure 2B implies that at a sample size near 15,000, estimating covariance
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Figure 2: Computational benchmarks for various sample sizes. Total sample sizes were determined by taking all combi-
nations of equal numbers of unique spatial locations and unique temporal locations and then removing a single spatio-
temporal location so {(s;,t;)} C Sx T. All plot symbols indicate the average of 100 repetitions at each sample size. (A)
shows the average time (in seconds) for the product (P), sum-with-error (SWE), product-sum (PS), and Cholesky (CHOL)
inversion algorithm approaches. In (A), discerning between the P, SWE, and PS algorithms is difficult, so (B) zooms
in on both the x and y axes. (C) shows the ratios of average inversion approach times for the Cholesky decomposition
relative to our algorithms. (D) shows the average computational time (in seconds) for the empirical semivariogram.
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Table 1: Models, estimation methods, and abbreviations.

Model Estimation Method Abbreviation
Product LMM Restricted Maximum Likelihood PremL
Product LMM Cressie's Weighted Least Squares Pcwis
Sum-With-Error LMM Restricted Maximum Likelihood SWEgemL
Sum-With-Error LMM Cressie's Weighted Least Squares SWEcw.s
Product-Sum LMM Restricted Maximum Likelihood PSremL
Product-Sum LMM Cressie's Weighted Least Squares PScwis
Independent Random Error Ordinary Least Squares IREoLs

parameters of the product, sum-with-error, and product-sum LMM’s could take approximately 10
minutes, 20 minutes, and 80 minutes, respectively.

CWLS estimation of @ does not require inverting a covariance matrix, but it does require
calculating the empirical semivariogram. Computational times associated with the empirical semi-
variogram are provided in Figure 2D for the same sample sizes used to benchmark inversions. Un-
surprisingly, the computational time grows with the sample size, increasing to just over a minute
at a sample size of 15,000. At a sample size of 15,000, estimating covariance parameters of the
product, sum-with-error, and product-sum LMM’s could take roughly one minute.

It is clear that CWLS estimation is far more computationally efficient than REML estimation
when considering REML often needs several inversion iterations (figures 2A and 2B) to converge to
a solution. But REML often outperforms CWLS in the context of estimation and prediction (Zim-
merman and Zimmerman, 1991; Lark, 2000; Ver Hoef and Cressie, 2001; Minasny and McBratney,
2005; Bevilacqua et al., 2012). In Sections 5 and 6, we explore the balance between performance
and computational efficiency using simulated and real data, respectively.

5. Simulation Study

We used a simulation study to compare among the product, sum-with-error, and product-sum
LMMs (dependent random error models), to compare restricted maximum likelihood (likelihood-
based) and Cressie’s weighted least squares (semivariogram-based) estimation, and to compare the
dependent random error models to an independent random error model (estimated using ordinary
least squares). The model and estimation method combinations of interest are summarized and
given relevant abbreviations in Table 1.

In total, we considered four separate simulation scenarios. Before discussing the differences
among the scenarios, we present their similarities. Each simulation scenario consisted of 2000
independent trials. In each trial, we selected 35 random spatial locations in [0,1] x [0, 1] and
35 equally spaced time points in [0,1]. The response variables, denoted by y, were simulated at
all combinations of these spatio-temporal locations and had a consistent mean structure. This
mean structure was X3 = fy + 8:Xxs + Bix; + BsiXst, where X, X;, and x; are covariates simulated
independently from zero mean Gaussian distributions with unit variance: x4 varies through space
but not time, x; varies through time but not space, and x4 varies through space and time. For
example, if y is daily maximum temperature, x, may represent elevation, x;, may represent day-
of-the-month, and x, may represent precipitation. In all trials, each parameter in 3 was fixed at
zero, implying the true variability in y was driven by only the random errors. Though we discuss
the random errors in more detail in the next paragraph, their covariances always depended on
the exponential spatial correlation, Ry = exp(—3||hs||/#), and the tent (linear-with-sill) temporal
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Table 2: Random error structure in simulation scenarios 1 (S1) and 2 (S2).

Cov(d) Cov(y) Cov(r) Cov(n) Cov(w) Cov(v) Total Variance
Scenariol 4 xR, 4xI, 4xR, 4xI, 10xR, @R, 4xI, 30
Scenario2 18 xR, O0xI, 10xR, O0xI, O0xR, @R, 2xI 30

correlation, Ry = (1 — |h|/k) x I{|h¢| < k}. In Ry, ||hs]| is the Euclidean spatial distance, and
¢ is the spatial range. In Ry, |hy| is the absolute temporal distance, & is the temporal range, and
I{|h;] < K} is an indicator variable equaling one if |h;| < k and zero otherwise. These spatial
and temporal range parameters were given values ¢ = 1/ V2and k =1 /2, implying observations
with spatial distances larger than ¢ and temporal distances larger than k were approximately
uncorrelated.

Random errors in Scenario 1 and Scenario 2 were simulated from Gaussian distributions with
covariance structures in Table 2. In Scenario 1, one-third of the total variance is from the spatio-
temporal dependent random error, and the leftover variability is spread out evenly among the
remaining random errors. We expected the sum-with-error LMM may struggle in this scenario
relative to the product and product-sum LMM’s because the sum-with-error LMM lacks a compo-
nent modeling R; ® Ry. In Scenario 2, the total variance is concentrated in the spatial dependent
random error, temporal dependent random error, and completely independent random error com-
ponents. We expected the product LMM may struggle in Scenario 2 relative to the sum-with-error
and product-sum LMM’s because the parameter confounding in the product-LMM (11) forces a
completely independent error of zero if the proportion of spatial independent random error and
temporal independent random error both equal zero. In Scenario 2, the proportion of spatial
independent random error and temporal independent random error both equaled zero, but the
completely independent random error equaled two.

Scenarios 3 and 4 had similar structures to Scenarios 1 and 2, respectively, but their errors
were not Gaussian. For each trial in Scenario 3 (or similarly, Scenario 4), the random errors 6,
~, T, M, v, and v were simulated using a Gaussian distribution and the covariance configuration
from Scenario 1 (or similarly, Scenario 2). Each random error was then squared and rescaled so
the sample variance of these squared errors matched the sample variance of the Gaussian errors.
This squaring and rescaling gives the errors larger tails than would be expected under a Gaussian
distribution.

Of the 1225 elements in y, 1224 (n,) elements were randomly treated as training data and used
to estimate the covariance parameters and fixed effects. The remaining one (n,,) observation was
treated as test data and used to compare against predictions made at its location.

We quantified the effectiveness of each model and estimation combination method by assess-
ing fixed effect and prediction performance. Studying fixed effect performance was important
because fixed effects are often used to understand scientific associations between response vari-
ables and covariates. Fixed effect performance was evaluated using type I error rates, mean bias,
and root-mean-squared error. Studying prediction performance was important because it is often
of interest to make predictions at unobserved locations. Prediction performance was evaluated
using prediction interval coverage rates, mean prediction bias, and root-mean-squared-prediction
error. We also quantified the computational cost associated with covariance parameter estimation,
thereby providing an initial understanding of the balance between performance and computational
feasibility for each model and estimation method combination.
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Table 3: Type | error rates of BS7Bt, and Bst for all model and estimation method combinations (Modelmethod) in all four
simulation scenarios (S1, S2, S3, S4).

S1 S2 S3 S4
MOde'Method 58 ﬁt 551& Bs /Bt ﬁst ﬁs 5t ﬁst ﬁs ﬁt Bst
PremL 139 .050 .110 | .091 .400 .084 | .093 .145 .052 | .257 .277 .105
Pcwis 110 .167 .089 | .129 .128 .393 | .119 .198 .099 | .093 .323 .184

SWEgemL .08 .065 .046 | .061 .058 .051 |.061 .063 .041|.059 .093 .053
SWEcwis .064 .091 .074 | .056 .085 .067 |.060 .117 .089 | .063 .155 .064

PSremL .058 .058 .049 | .063 .062 .048 | .038 .070 .047 |.061 .096 .054
PScwis .089 .089 .049 | .057 .072 .077 |.089 .153 .054 | .065 .160 .131
IREoLs 595 523 .054 | .695 .492 .046 | .599 461 .047 | .702 .348 .061

Table 4: Root-Mean-Squared-Errors of [;’S,Bt, and Bst for all model and estimation method combinations (Modelpmethod)
in all four simulation scenarios (S1, S2, S3, S4).

S1 52 S3 S4
|ledeIMethod /88 ﬂt ﬂst Bs /615 ﬂst ﬂs ﬂt 5515 Bs ﬁt Bst
PremL 514 396 .068 | .551 .199 .053 | .506 .342 .062 | .590 .181 .023
Pcwis 513 400 .069 | .488 .185 .059 | .506 .342 .067 | .573 .159 .026

SWEgremL 501 397 .086 | .440 .145 .041 | 506 .343 .097 | .538 .151 .019
SWEcwis 513 400 .086 | .468 .161 .041 | .508 .345 .097 | .564 .160 .019

PSremL 493 391 .064 | 442 .145 .041 | 487 .337 .061 | .b37 .154 .017
PScwis b515 399 .066 | .470 .159 .042 | 501 .344 .065 | .565 .157 .019
IREoLs 572 483 147 | 687 436 .135 | .580 .431 .145| .740 .378 .135

5.1. Fized Effect Performance

For type I error rates, the test statistic associated with each § parameter equals | [;’ |/ SE(ﬁ),
where SE() denotes the estimated standard error. Though the null distributions of these test
statistics are generally unknown, each was approximated by a zero mean Gaussian distribution
with unit variance. As a result, Type I error rates were estimated at a significance level of 0.05
by calculating the rate at which the the test statistic exceeded 1.96, a standard cutoff for a two-
sided Gaussian hypothesis test. An estimated type I error rate is valid if it is within [0.04, 0.06],
where the half-width of this interval approximately equals the margin of error for a 95% binomial
confidence interval with probability (of rejection) equaling 0.05 and sample size of 2000. Mean bias
was estimated as each B’s average deviation from 3 across the 2000 trials. RMSE was estimated
as the square root of each B’s average squared deviation from 3 across the 2000 trials.

Type I error rates are summarized in Table 3 for B, f;, and By. Prewmi and Powrs type I
error rates were generally too large, sometimes as high as 40%. SWEgremn, SWEcwLs, PSrEML,
and PScwrs type I error rates were often valid in S1 and S2 (Gaussian errors), but they tended to
be slightly larger and outside of the valid range in S3 and S4 (non-Gaussian errors). Furthermore,
the SWEcwrs and PScwrs type I error rates were usually larger than their REML counterparts.
IREqLs type I error rates were far too large for 35 and Bt but valid or nearly valid for Bst.

Mean bias was approximately zero for all models and estimation methods in all four scenarios.
As a result, we leave the table summarizing mean bias for the supplementary material.

Root-Mean-Squared-Errors (RMSE) are summarized in Table 4 for g, 8;, and Sg. In S1, S3,
and S4, PSgrepmr, had the lowest (best) RMSE, followed closely by PScwrs and then by the other
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dependent error models. In S2, SWEgrgwmL, SWEcwLs, PSremr has the same RMSE after rounding,
followed closely by and PScwrs and then by the product LMM’s. In S1 and S3, the deficiencies
of the sum-with-error LMM are most apparent in 33’8 RMSE, which was roughly 25%-50% higher
than 33 RMSE for the other dependent error models. In S2 and S4, the deficiencies of the product
LMM are most apparent in Bg’s RMSE, which was roughly 30%-50% higher than Bg RMSE for the
other dependent error models. Finally, IREgps had the highest RMSE across all scenarios, and
performance relative to the dependent error models was worst for ﬂAst. These results showed the
relative discrepancies in RMSE among all models were most drastic for the Bst estimate associated
with x,,, the covariate varying across space and time.

Type I error rate and RMSE performance for Bg was much better than Bl or Bg performance
for all models and estimation methods across all simulation scenarios. This likely occurred because
the x, and x; covariates associated with BS and Bt are patterned in space and in time, causing
noticeable variance inflation in the dependent error models (Reich et al., 2006).

5.2. Prediction Performance

We quantified prediction performance by evaluating prediction interval coverage rates, mean
prediction bias, and root-mean-squared-prediction error (RMSPE). Recall that in each simulation
trial, we simulated y at all 1225 combinations of 35 spatial locations and 35 time points. Then
a random location was chosen and its associated element in y, denoted by y,, was held out and
used to evaluate prediction performance. We did explore holding out up to 100 y values in each
trial, but there was little change in the prediction performance metrics compared to holding out a
single value. This is likely because of the large number of simulation trials (2000).

We predicted y, and its associated variance using equations (19) and (20) evaluated at 0.
Prediction interval coverage rates were estimated by calculating the rate at which each element of
v is contained in its 95% Gaussian prediction interval. The estimated prediction interval coverage
rate is valid if it is within [0.94,0.96], where the half-width of this interval approximately equals
the margin of error for a 95% binomial confidence interval with probability (of coverage) equaling
0.95 and sample size of 2000. Mean prediction bias was estimated as each y,’s average deviation
from y, across the 2000 trials. RMSPE was estimated as the square root of the average of each
V.’s squared deviation from y, across the 2000 trials.

Prediction interval coverage rates are summarized in Table 5. In S1, coverage rates were
a few percentage points too low for Pewrs and SWEewrs but valid for the other model and
estimation method combinations. In S2, coverage rates dropped for all model and estimation
method combinations, and only SWEggwmr, and IREgs had valid coverage rates. The coverage rate
was especially low for Paowrs, which tended to consistently overestimate the spatial and temporal
range parameters and associated correlation. In S3 and S4, no models or estimation methods had
valid coverage rates, and coverage rates generally decreased relative to their respective S1 and S2
counterparts. This drop in coverage rates was likely due to the non-Gaussian errors used to simulate
the data while a Gaussian assumption was implied while constructing the prediction intervals.
Coverage for Powrs increased in S4 relative to S2, likely because there was less overestimation of
the strength of the spatial and temporal range parameters and associated correlation.

Mean prediction bias was approximately zero for all models and estimation methods in all four
scenarios. As a result, we leave a table summarizing mean prediction bias for the supplementary
material.

Root-Mean-Squared-Prediction-Errors (RMSPE) are also summarized in Table 5. In S1 and
S3, PSremr, has the lowest (best) RMSPE, followed closely by Premr, PScwrs, and Powrs. In
these scenarios, RMSPE for SWEgrgmn, and SWEcwrs was approximately 26% to 71% higher
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Table 5: Coverage rate (Coverage) and root-mean-squared-prediction error (RMSPE) for all model and estimation method
combinations (Modelmethod) in all four simulation scenarios (S1, S2, S3, S4).

Coverage RMSPE
ModeIMethod S1 S2 S3 S4 S1 S2 S3 S4
PremL 950 925 928 .927 | 2.379 1.764 2.155 0.733
Pcwis 910 .661 916 .873|2.474 1.848 2.247 0.856

SWERremL 949 940 931 .935|3.115 1.500 3.641 0.629
SWEcwis 917 912 902 .931|3.114 1506 3.645 0.654

PSremL 952 938 936 .935|2.342 1504 2.130 0.630
PScwis 956 .901 .936 .878 | 2.388 1.516 2.295 0.705
IREoLs 946 955 928 931 | 5.215 4.707 5.419 4.885

Table 6: The average empirical semivariogram calculation seconds (SV Sec.), average covariance parameter estimation
seconds (Est. Sec.), average total empirical semivariogram calculation and covariance parameter estimation seconds
(Tot. Sec; the sum of SV Sec. and Est. Sec), and average REML iterations (REML lter.) for all models and estimation
methods (Modelwyethod) in S1.

Modelpethod SV Sec. Est. Sec. Tot. Sec. REML lter.

PremL NA 5.51 551 96.82
Pcwis 0.31 0.08 0.39 NA
SWERremL NA 3.81 3.81 46.94
SWEcwis 0.31 0.18 0.49 NA
PSremL NA 11.00 11.00 58.77
PScwis 0.31 0.26 0.57 NA
IREoLs NA 0.01 0.01 NA

than RMSPE for the other dependent error models. Alternatively in S2 and S4, SWERgy1, has the
lowest (best) RMSPE, followed closely by PSremr, SWEcwLs, and PScwrs. In these scenarios,
RMSPE for Prgmr, and Powrs was approximately 5% to 36% higher than RMSPE for the other
dependent error models. Finally, IREqLs had the highest RMSPE across all scenarios.

5.8. Computational Performance

We quantified computational performance by measuring and contextualizing the average time
required to estimate the covariance parameters for all models and estimation methods. These
times are summarized in Table 6 for S1. In S1, covariance parameter estimation for Prewmr, took
an average of 5.51 seconds and 96.82 iterations, for SWEgRgM, took an average of 3.81 seconds and
46.94 iterations, and for PSggmi, took an average of 11.00 seconds and 58.77 iterations. Though
inverting the product covariance matrix is faster than inverting the sum-with-error covariance
matrix, the extra inversions required resulted in the increased computational time for Prgwur,.
Covariance parameter estimation for CWLS generally took around half a second; the majority
of this computational burden was from calculating the empirical semivariogram (0.31 seconds).
Irrespective of the LMM in question, CWLS estimation was much faster than REML estimation.
All dependent error models took far longer to estimate than IREqrg, however.

Though computational performance tables for S2, S3, and S4 are saved for the supplementary
material, the general takeaways are the same: The speed of REML estimation can vary greatly
depending on how many iterations are required to converge to a solution, REML estimation is very
slow relative to CWLS estimation, and the most computationally costly part of CWLS estimation
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Figure 3: Oregon station locations in the training and test data observed for at least one day in July.

is calculation of the empirical semivariogram. All computations were performed on an Intel(R)
Xeon(R) CPU E5-2690 v3 @ 2.60 GHz processor using a single core and 227 GB of available RAM.
Further computational details are provided in the supplementary material.

6. Application: Oregon Daily Maximum Temperature

It is often of interest to study the effect of environmental variables on daily temperature pat-
terns. Oregon is a wet, mountainous state in the United States of America that has varying climate
regions and moderately warm summers. We used the same model and estimation method combi-
nations from Section 5 (Table 1) to explain variation in daily maximum temperature (Farenheit)
in Oregon during each day in July, 2019. Data were obtained through the National Oceanic and
Atmospheric Administration’s Global Historical Climate Network. To compute distances in terms
of kilometers, we used a Transverse Mercator projection (Lambert, 1972).

Subsets of the full data were used as training data and test data. The training data contained
observations from 33 randomly selected weather stations at all time points available. Some weather
stations in the training data were not observed at every time point; the training data contained
972 of the 1023 possible observations. The training data were used to estimate the covariance
parameters and some fixed effects. The test data contained 2000 observations that were randomly
selected from the full data after removing observations from the training data. The test data were
used to evaluate prediction performance. Unique spatial locations in the training and test data
are shown in Figure 3.

We modeled daily maximum temperature having mean structure
XB = Bo + LetevXeiev + BdayXday + BprepXpreps Where Xee,, is weather station elevation (in meters
above mean sea level), X4, is day-of-the-month, and x,,, is daily precipitation (in millimeters).
This mean structure matches the mean structure from the simulation study in Section 5: One
covariate varied through space but not time (elevation), one covariate varied through time but not
space (day-of-the-month), and one covariate varied through space and time (precipitation). The
empirical spatio-temporal semivariogram suggested the exponential correlation was a reasonable
choice to model the spatial and temporal correlations. The model and estimation methods from
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Table 7: Coverage rates (Coverage), root-mean-squared-prediction-error (RMSPE), semivariogram calculation seconds
(SV Sec.), covariance parameter estimation seconds (Est. Sec.), total semivariogram calculation and covariance parameter
estimation seconds (Tot. Sec; the sum of SV Sec. and Est. Sec), and REML iterations (REML lIter.) for all models and
estimation methods (Modelpethod) used to analyze the daily maximum temperature data.

Modelyethos Coverage RMSPE SV Sec. Est. Sec. Tot. Sec. REML lter.

PremL .895 6.097 NA 12.63 12.63 179
Pcwis 913 7.828 0.17 0.07 0.24 NA
SWEgremL .965 4.826 NA 8.62 8.62 95
SWEcwis .907 7.584 0.17 0.16 0.33 NA
PSremL .959 4.644 NA 12.79 12.79 80
PScwis .955 6.415 0.17 0.36 0.53 NA
IREoLs 911 8.136 NA 0.01 0.01 NA

Section 5 (Table 1) were used to study estimation, prediction, and computational performance of
these data.

All model and estimation method combinations found a strong, positive association between
day-of-the-month and daily maximum temperature (all Gaussian-based p-values from < .001 to
.038) and a strong, negative association between elevation and daily maximum temperature (all
Gaussian-based p-values from < .001 to .043). IREqps found a strong, negative association between
precipitation and daily maximum temperature (Gaussian-based p-value < .001), but the dependent
random error models found less evidence of this association (Gaussian-based p-values from .096 to
.224). This discrepancy is likely related to the variance inflation in the dependent random error
models discussed in Section 5.1, though in the simulation scenarios the inflation was most apparent
for the parameters associated with the spatially patterned and temporally patterned covariates.

Test data prediction performance for each model and estimation method combination was sum-
marized using familiar metrics: 95% Gaussian prediction interval coverage, mean prediction bias,
and root-mean-squared-prediction-error (RMSPE). Table 7 shows PSggmr, and PSawrs had cover-
age rates closest to 0.95, PSgwg had coverage rates that were slightly too high, and Prgmr, Powws,
SWEcwLs, and IREgrs had coverage rates that were slightly too low. Among the dependent
error models, PSggyp, has the lowest RMSPE, followed in order by SWEgrgMmL, Premr, PScwes,
SWEcwrs, and finally Pewrs. The dependent random error models all had lower RMSPE than
IREoLs.

Mean prediction bias was approximately zero for all models and estimation methods. As a
result, we leave summarizing mean prediction bias for the supplementary material.

A fitted semivariogram using the model and estimation combination method yielding the lowest
RMSPE, PSgreMmL, is provided in Figure 4. Based on Figure 4, this estimated process has spatial
covariance decaying to zero at nearly 1,500 kilometers, has temporal covariance decaying to zero
at nearly 4 days, and is primarily influenced by the spatial dependent random error.

Computational performance was also summarized in Table 7 for all model and estimation
method combinations. Similar to Section 5, REML estimation (8.62 - 12.79 seconds) took far
longer than CWLS estimation (0.24 - 0.53 seconds). All computations were performed on an
Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60 GHz processor using a single core and 227 GB of
available RAM. Further computational details are provided in the supplementary material.
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7. Discussion

In this paper, we described spatio-temporal random processes using linear mixed models
(LMMs). This approach builds upon the single random error formulation and partitions sources of
spatial and temporal variability into distinct random effects. The spatio-temporal LMM’s general,
flexible framework accommodates many commonly used covariance functions as special cases. It
can also be used to model spatio-temporal processes whose covariance functions are not second-
order stationary or not isotropic (isotropy implies the covariance function behaves similarly in
all directions), though we leave those types of covariance functions for future research. Building
from the sum covariance function, we proposed the sum-with-error covariance function, which is
strictly positive definite. Though there are many elegant spatio-temporal covariance functions and
estimation methods in the literature, we focused on studying three familiar covariance functions
(product, sum-with-error, and product-sum) and two familiar estimation methods (REML and
CWLS).

Our novel algorithms manipulate the structure of the product, sum-with-error, and product-
sum covariance matrices to efficiently invert them, even when every spatial location is not observed
at every time point. Though these algorithms are most useful for extending the range of sample
sizes for which REML estimation can applied, they are also useful for best linear unbiased esti-
mation of B and best linear unbiased prediction (Kriging). Our algorithms can also be combined
with other computationally efficient approaches that require inversion of a covariance matrix, such
as Fixed Rank Kriging.

We found that in the processes we studied, REML estimation tended to outperform CWLS
estimation, even when the processes’ errors were not Gaussian. But the allure of this increased
performance is diminished when considering the significantly increased computational burden asso-
ciated with REML estimation. At the lower sample sizes, this computational performance gap may
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not make much practical difference. For example, in S1, the longest average estimation time was
11 seconds. But as the sample size increases, REML’s computational limitations become a more
important consideration. Moreover, model comparison is easier using CWLS estimation because
its main computational burden is calculating the empirical semivariogram, which can be reused to
estimate covariance parameters of separate models. Estimating covariance parameters of separate
models using REML estimation, however, requires separate optimization routines, each requiring
repeated covariance matrix inversions. One advantage of model selection via REML, however, is
that likelihood-based statistics (e.g. AIC) can be leveraged. An alternative approach for REML
estimation is to inform model selection through inspection of the empirical semivariogram (or co-
variance function) based on the representations in Figure 1 and the supplementary material. These
visualizations can aid in understanding how well each model may perform before estimation. For
example, if the empirical covariance or semivariogram suggests o2 (the spatio-temporal dependent
error) is much smaller than the other variance parameters, the sum-with-error LMM will likely fit
the data well and is more computationally efficient than the product-sum LMM.

We identified scenarios in which the sum-with-error LMM is inferior to the product and product-
sum LMMs (S1, S3) and scenarios in which the product LMM is inferior to the sum-with-error
and product-sum LMMs (S2, S4, temperature data). And while the product-sum LMM generally
performed best, estimating its covariance parameters (using either estimation method) always had
a higher computational cost than estimating the covariance parameters of the other LMMs.

It is important to emphasize that all spatio-temporal random processes have unique charac-
teristics governing their covariance structure, and even among the model and estimation methods
combinations discussed in this paper, there is certainly no combination that is uniformly best for
all applications. The balance between model performance and computational efficiency must be at
the core of a practitioner’s decision making process when determining which model and estimation
methods to implement.
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